6 SEM TDC MTMH (CBCS) C 13

2024

(May)

MATHEMATICS

(Core)

Paper: C-13

(Metric Spaces and Complex Analysis)

Full Marks: 80
Pass Marks: 32

Time: 3 hours

The figures in the margin indicate full marks for the questions

1.	(a)	Write the triangle inequality of metric space.	1
	(b)	A metric d on a non-empty set may be negative. State True or False.	1
	(c)	A metric space consists of two objects. Write that objects.	2
	(d)	Define a pseudometric on a non-empty set.	2
	(e)	Define a complete metric space.	2

- (f) Answer any two from the following: $6\times2=12$
 - (i) Show that in any metric space X, each open sphere is an open set.
 - (ii) Let X be a metric space with metric d. Show that d_1 defined by

$$d_1 = \frac{d(x, y)}{1 + d(x, y)}$$

is also a metric on X.

- ii) Show that a Cauchy sequence is convergent if and only if it has a convergent subsequence.
 - (iv) Show that a subset of a metric space is bounded if and only if it is non-empty and is contained in some closed sphere.
- 2. (a) Write when a metric space is called sequentially compact.
 - (b) Write an example of an uniformly continuous function in a metric space. 1
 - (c) Define a continuous mapping in a metric space.
 - (d) Show that the homeomorphism on the set of all metric spaces is an equivalence relation.

Or

Let f is a continuous mapping of a metric space X into a metric space Y. Then show that if E is a connected subset of X, then f(E) is connected.

(e) Let X and Y be metric spaces and f a mapping of X into Y. Then show that f is continuous at x_0 if and only if $x_n \to x_0 \Rightarrow f(x_n) \to f(x_0)$.

Or

Show that every compact metric space has the Bolzano-Weierstrass property.

- 3. (a) Define extended complex plane.
 - (b) If a function f is continuous throughout a region R, then it is not bounded. State True or False.
 - (c) Show that $\lim_{z\to 0} \frac{z}{\overline{z}}$ does not exist.
 - (d) Find the arg z, where $z = \frac{-5}{1 + i\sqrt{2}}$.
 - (e) Show that $\frac{dw}{dz} = (\cos\theta i\sin\theta)\frac{\partial w}{\partial r}$, $w = w(r, \theta)$ is an analytic function.

Or

Let $f(z) = z - \overline{z}$. Show that f'(z) does not exist at any point.

- (f) Describe the mapping $w = z^2$.
- **4.** (a) Find the analytic function f(z) = u + iv, where $u(x, y) = \sinh x \sin y$.
 - (b) e^z may have negative value. State True or False.

24P/888

(Continued)

1

24P**/888**

(Turn Over)

5

1

- (c) Show that $\log (e^z) = z + 2n\pi i$, $n = 0, 1, 2, \cdots$.

 Or

 Evaluate $\int_C \overline{z} dz$, where C is the right-
- 5. (a) If a series of complex numbers converges, then write to which the nth term converges as n tends to infinity.

hand half of the circle |z|=2.

(b) Find the limit to which the sequence $z_n = \frac{1}{n^3} + i$, $n = 1, 2, \dots$ converges. 2

1

2

2

1

- (c) State and prove Liouville's theorem. 7

 Or

 Find the Taylor's series for the function
 - Thing the Taylor's series for the function $\frac{1}{(1+z^2)(z+2)}, \text{ when } |z| < 1.$
- **6.** (a) Define absolute convergence of a power series.
 - (b) Define the circle of convergence of a power series.
 - (c) Write when a power series is called uniformly convergent.
 - (d) Find Laurent's series for the function

$$f(z) = \frac{4z+3}{z(z-3)(z+2)}$$

when 2 < |z| < 3.

* **