Total No. of Printed Pages-5

6 SEM TDC PHYH (CBCS) C 14

2024

(May)

PHYSICS

(Core)

Paper: C-14

(Statistical Mechanics)

Full Marks: 53
Pass Marks: 21

Time: 3 hours

The figures in the margin indicate full marks for the questions

1. Choose the correct option from the following:

1×5=5

- (a) The thermodynamic probability of a system in equilibrium is
 - (i) maximum
 - (ii) minimum but not 1

(iii) 1

(iv) zero

- (b) Rayleigh-Jeans law of radiation
 - (i) applies to smaller wavelengths
 - (ii) applies to longer wavelengths
 - (iii) applies to all wavelengths
 - (iv) does not apply to any wavelength
- (c) According to which statistics, the energy at absolute zero cannot be zero?
 - (i) MB ____
 - (ii) BE
 - (iii) FD
 - (iv) None of the above
- (d) Five particles are distributed in twophase cells. Then the number of macrostates is
 - (i) 6
 - (ii) 10
 - (iii) 32
 - (iv) $\frac{5}{2}$
- (e) Deduction of Planck's law is possible on the basis of
 - (i) Fermi-Dirac (FD) statistics
 - (ii) classical statistics
 - (iii) Maxwell-Boltzmann (MB) statistics
 - (iv) Bose-Einstein (BE) statistics

- 2. (a) Define statistical ensemble.

 Differentiate among canonical,
 microcanonical and grand canonical
 ensembles.

 1+3=4
 - (b) Define entropy. Show that the entropy of the system is proportional to the logarithm of probability of that system.

1+3=4

6

3

(c) Show that the number of molecules in a cell of energy ε_i in the equilibrium state is given by $n_i = Ae^{-\varepsilon_i/kT}$, where A is any constant.

Or

Derive the expression for entropy, enthalpy and Helmholtz's free energy in terms of statistical parameters. 2+2+2=6

- 3. (a) State Stefan-Boltzmann law of radiation. Deduce this on the basis of thermodynamic considerations.
 - (b) What is black-body radiation? Explain its temperature dependence. 1+2=3
 - (c) What is Planck's law of black-body radiation? Derive an expression for it.

2+3=5

(d) State and explain Rayleigh-Jeans law. Explain its validity in terms of experimental results.

2

Or

Calculate the energy radiated by unit area of a blackbody in one second when it—mperature is 1000 K.

(6-5.672×10⁻⁸ J/S/m²)

4. (a) "Bosons may condense at very low temperature." Give a statistical mechanical interpretation.

O

How many photons are present in 1 cm³ of radiation at 727 °C? [Given, $\int_0^\infty \frac{x^2 dx}{x^2 + 1} = 2.405$]

- (b) What is photon gas? What are the properties of photon gas? 1+2=3.
- (c) Derive an expression $n_i = \frac{g_i}{e^{\alpha + \beta E_i} 1}$ for the most probable distribution of the particles of a system obeying BE statistics.

Or

Derive the expression for energy of a strongly degenerate Bose gas.

5. (a) What is the cause of degeneracy pressure inside a white dwarf star? Explain the limit depending on which some stars become white dwarf star and other becomes neutron star or black hole.

1+4=5

Or

Derive the expressions for entropy and Helmholtz free energy of a strongly degenerate Fermi gas.

5

5

(b) Derive an expression for Fermi-Dirac law of energy distribution for free electrons in a metal.

Or

At absolute zero temperature (T=0 K), all the energy levels up to ε_f are completely filled. Calculate the total number of fermions in a Fermi gas at T=0 K and express ε_f in terms of number density (N/V).

**