Total No. of Printed Pages-4

6 SEM TDC DSE PHY (CBCS) 2 (H)

2024

(May)

PHYSICS

(Discipline Specific Elective)

(For Honours)

Paper: DSE-2

(Nanomaterials and Applications)

Full Marks: 53
Pass Marks: 21

Time: 3 hours

The figures in the margin indicate full marks for the questions

1. Choose the correct option of the following:

1×5≃5

- (a) STM can only scan
 - (i) insulating surfaces
 - (ii) conducting surfaces
 - (iii) polymer materials
 - (iv) None of the above

(b) Briefly explain top-down and bottom-up

(d) Calculate the ground state exciton

What is excitonic Bohr radius? How is dielectric constant affect the excitonic Bohr radius of a semiconductor

(a) What is quantum confinement?

approaches with examples.

material?

(b)	The resolving power of TEM is derived from		
	(i) electrons		
	(ii) specimens		
	(iii) voltage applied		
	(iv) pressure		
(c)	X-ray crystallography is a form of		
	(i) Raman scattering		
	(ii) Inelastic scattering		
٠	astic scattering		
	(iv) None of the above		
(d)	The main consequence of disorder in		
	the electronic structures of the material		
	is the appearance of		
	(i) localized states		
	(ii) valence band		
	(iii) conduction band		
	(iv) None of the above		
(e)	The phenomenon used by single- electron devices for their operations is		
	(i) optical storage		

(ii) tunneling effect (iii) Coulomb blockage (iv) None of the above

	(w)	binding energy for GaAs. Given, $m_e^* = 0.067 m_e$, $m_h^* = 0.5 m_e$. Where m_e is free electron mass and the dielectric constant of GaAs is 12.93.
3.	(a)	Define density of states. Derive an expression for density of states for two dimensional materials and plot it as a function of energy. 1+3+1=5
	(b)	Explain quantum wires and quantum dots on the basis of their dimensions. 1½+1½=3
	(c)	Discuss the working of quantum dot heterostructures (QDHS) laser.
4.	(a)	What is a ball mill? Describe its working and state the various key factors responsible for selecting a grinding media in a ball mill. 1+4=5

1+1=2

	(b)	Distinguish between Mott-Wannier and Frenkel excitons.	2
5.	(a)	What is Coulomb blockage effect? Why is Coulomb blockage observed usually at low temperature? 2+2	=4
	(b)	Explain the use of nanowires in making solar cells.	3
6.	forc	cuss the working principle of an atomic ce microscope (AFM). What are the erent modes of operations of AFM? 4+2	=6
۰		Or	
	_	plain the construction and working nciple of scanning electron microscopy M).	6
7.		te short notes on any <i>two</i> of the owing:	;= 6
	(a)	Carbon nanotubes based transistors	
	(b)	NEMS	
	(c)	Optical properties of nanostructures	