4 SEM TDC CHMH (CBCS) C 8

2024

(May/June)

CHEMISTRY

(Core)

Paper: C-8

(Inorganic Chemistry)

Full Marks: 53
Pass Marks: 21

Time: 3 hours

The figures in the margin indicate full marks for the questions

1. Select the correct answer:

1×6=6

- (a) Which of the following has the highest lability?
 - (i) SF₆
 - (ii) [PF₆]
 - (iii) [SiF₆]²⁻
 - (iv) $[A1F_6]^{3}$

- The CFSE for the d^3 -ion in strong crystal field is
 - (i) 4 Da
 - (ii) 8 Dq
 - (iii) 12 Dq
 - (iv) 16 Da
- The metal present in carbonic anhydrase is
 - (i) Mg
 - (ii) Fe
 - (iii) Zn
 - (iv) Co
- If ingested, cadmium accumulates in
 - (i) liver
 - (ii) kidney
 - (iii) bone
 - (iv) muscles

- In the complex [Cu(H₂O)₆]²⁺, the metal ion has configuration
 - (i) d1

 - (iii) d9
 - (iv) d4
- The number of 4f-electrons in (1) lanthanum is
 - (i) 0
 - (ii) 1
 - (iii) 2
 - (iv) 5

UNIT-I

- 2. Answer the following questions: $2 \times 4 = 8$
 - (a) What are labile and inert complexes? Give examples. 2
 - Define crystal field stabilization energy. Find CFSE for strong field d⁵ complex. 1+1=2

(c) Arrange the ligands I⁻, CO, Cl⁻, CN⁻ and H₂O in the increasing order of the strength as given in spectrochemical series. Which of the following complexes has larger Δ_0 value?

 $[Fe(H_2O)_6]^{3+}$ or $[Fe(H_2O)_6]^{2+}$ 1+1=2

- (d) Write IUPAC names of the following compounds: 1+1=2
 - (i) [Co(NH₃)₅SCN]Cl₂
 - (ii) K₃[Co(CN)₅NO]
- 3. Answer any two questions:

3×2=6

- (a) What are ionization isomerism, linkage isomerism and coordination isomerism in coordination complexes? Explain with examples. 1×3
- (b) Define stereoisomerism in complexes. Discuss the stereoisomerism exhibited by the complex ion, $[\text{Co(en)}_2(\text{NH}_3)_2]^{3+}$.

(c) Write three basic postulates of valence bond theory (VBT) in complexes.

4. Answer any two questions:

4×2=8

- (a) Discuss the crystal field splitting in the complex [Fe(CN)₆]⁴⁻. Calculate its spin only magnetic moment and crystal field stabilization energy. 2+2=4
- (b) For the $[Cr(H_2O)_6]^{2+}$ ion, the mean pairing energy (P) is found to be 23500 cm⁻¹. The magnitude of Δ_0 is 13900 cm⁻¹. Calculate the CFSE for the complex in both high-spin state and low-spin state.
- (c) Why is there no case of high-spin and low-spin for a d^8 system (Ni²⁺)? Explain in the light of VBT citing examples.

UNIT-II

5. Answer any three questions:

3×3=9

- (a) Give reasons—
 - (i) why Zn, Cd, Hg are not regarded as true transition elements;
- (ii) why $[Ti(H_2O)_6]^{3+}$ ion is violet.

11/2+11/2=3

(b) Explain the Latimer and Ebsworth diagram to account the stability of various oxidation states and e.m.f.

- Write any three differences between firstand second-transition series elements.
- Give reasons for the following:

11/2+11/2=3

- (i) Ti4+ ion is more stable than Ti³⁺ ion.
- (ii) $[CoF_6]^{3-}$ is paramagnetic.
- 6 and the number of unpaired electrons and alculate the spin-only magnetic moment in the following complexes: 2+2=4
 - [Fe(H₂O)₆]²⁺
 - (ii) [Co(CN)₆]³⁻

UNIT-III

7. Answer any two questions:

- (a) What are the consequences lanthanide contraction?
- (b) "Cerium is the only lanthanide which is stable in (+4) oxidation state." Justify the statement.
- (c) Sm²⁺ is a good reducing agent and Ce⁴⁺ is a good oxidizing agent. Explain.

UNIT-IV

8. Answer any two questions:

 $4 \times 2 = 8$

- Discuss the structure and function of carboxypeptidase. 2+2=4
- Draw the structure of haemoglobin. How does it help in oxygen 2+2=4 transport?
- Discuss the poisoning effect of Hg in human body. How can it be 3+1=4 treated?

24P/1233

(Continued)