4 SEM TDC PHYH (CBCS) C 9

2024

(May/June)

PHYSICS

(Core)

Paper: C-9

(Elements of Modern Physics)

Full Marks: 53
Pass Marks: 21

Time: 3 hours

The figures in the margin indicate full marks for the questions

1. Choose the correct option:

1×5=5

- (a) The minimum energy required to remove an electron from the surface of a given metal is called
 - (i) stopping potential
 - (ii) work function
 - (iii) kinetic energy
 - (iv) None of the above

2.	Answer the following questions: $2 \times 5 = 10$		
	(a)	State and write the mathematical expression for Planck's law of blackbody radiation.	
	(b)	How can we determine the time of existence and range of a virtual particle using Heisenberg's uncertainty principle?	
	(c)	Briefly discuss the linear superposition principle.	
	(d)	Define and write the mathematical expression for the binding energy of a nucleus.	
	(e)	How did Pauli predict the emission of a neutrino from a nucleus?	
3.	(a)	Explain why it is impossible for an electron to be present inside the nucleus of an atom.	3
	(b)	Briefly discuss the process of nuclear fission with examples.	3
	(c)	Briefly discuss the creation of neutrino and antineutrino in the β -decay process with examples.	3
4.	(a)	Show that the half-life of a radioactive substance is inversely proportional to the decay constant.	4
4P	127	4 (Turn Ove	er

(iv) Heavy water

Show that the group velocity of a wave packet is equal to the particle velocity.

- (b) Briefly discuss the construction and working of an He-Ne laser.
- 5. (a) Briefly describe the confinement of a quantum dot in an infinitely rigid box. Find the value of N for the wave function of a particle of mass m moving along X-axis between $x = -\frac{\pi}{2}$ to $x = +\frac{\pi}{2}$ is given by $\psi = N \sin^2 x$.
 - (b) Explain Compton scattering and obtain an expression for the Compton shift. 6
 - (c) Explain the quantum mechanical tunnelling for a particle across a rectangular potential barrier and obtain the expression for transmission coefficient.
- **6.** Write a short note on any one of the following:
 - (a) Nuclear shell model
 - (b) Davisson-Germer experiment

* * *

5