4 SEM TDC MTMH (CBCS) C 8

2024

(May/June)

MATHEMATICS

(Core)

Paper: C-8

(Numerical Methods)

Full Marks: 60 Pass Marks: 24

Time: 3 hours

The figures in the margin indicate full marks for the questions

- (a) Define a flowchart.
 (b) Write an algorithm to find the sum and product of two numbers.
 (c) The number x = 49.67235 is rounded off to four significant figures. Compute the absolute error and relative error.
 1+1=2
 (a) State true or false :
- A transcendental equation may have infinite number of roots.
 - (b) Find a real root of the equation $x^3 5x + 1 = 0$ by secant method, correct up to four decimal places.

4

Or

Find a real root of the equation $x^3 - 2x^2 - 4 = 0$ by the method of bisection correct up to 3 decimal places.

5

5

5

(Continued)

(c) Describe Newton-Raphson method for solving algebraic equation.

Or

Apply Newton-Raphson method to find $\sqrt{12}$.

3. (a) Solve

$$x+y-3z=3$$
$$2x-3y+4z=-4$$
$$x-y+z=-1$$

by Gaussian elimination method.

Or

Find the solution of the system

$$27x+6y-z=85$$

 $6x+15y+2z=72$
 $x+y+54z=110$

by Gauss-Jacobi method up to three iterations.

(b) Find the solution of the system of equations

$$5x-2y+3z=-1$$

$$-3x+9y+z=2$$

$$2x-y-7z=3$$

by Gauss-Seidel method up to four iterations.

Or

Describe Gauss-Jordan method.

- **4.** (a) Show that $(1 + \Delta)(1 \nabla) = 1$.
 - (b) The following data represents the function $f(x) = \cos(x+1)$:

x	0.0	0.2	0.4	0.6	
f(x)	0.5403	0.3624	0.1700	-0.0292	

Estimate f(0.5) using the Newton's backward difference interpolation.

(c) Deduce Lagrange's interpolation formula.

Or

Construct the divided difference table for the following data:

х	0.5	1.5	3.0	5.0	6.5	8.0
f(x)	1.625	5.875	31.0	131.0	282-125	521.0

Hence, find the interpolating polynomial.

5. (a) Evaluate $\int_0^1 \frac{dx}{1+x}$ using trapezoidal rule. 5

Or

Evaluate $\int_0^1 \frac{dx}{1+x^2}$ using Simpson's $\frac{3}{8}$ th rule.

4

5

- (b) Evaluate $\int_{1}^{2} \frac{1}{x} dx$ using Simpson's $\frac{1}{3}$ rd rule.
- (c) Evaluate $\int_0^4 \frac{1}{1+x^2} dx$ using Boole's rule using h = 0.5.

Or

Use the midpoint rule to estimate

$$\int_{-0.5}^{3.5} \frac{x^3}{4} dx$$

using four subintervals.

- 6. (a) Deduce Euler's method for first-order and first-degree differential equation.
 - (b) Using Runge-Kutta method of fourthorder, find the numerical solution at x = 1.2 for

$$\frac{dy}{dx} = xy, \ y(1) = 2$$

5

5

assume the step length h = 0.1.

Or

Given $\frac{dy}{dx} = -2xy^2$, y(0) = 1, compute y(0.4) using Euler's method taking h = 0.2.

**