4 SEM TDC MTMH (CBCS) C 9

2024

(May/June)

MATHEMATICS

(Core)

Paper: C-9

(Riemann Integration and Series of Functions)

Full Marks: 80
Pass Marks: 32

Time: 3 hours

The figures in the margin indicate full marks for the questions

- 1. (a) State Riemann condition of integrability. 1
 - (b) If f is bounded on [a, b] and M, m are supremum and infimum of f on [a, b], then prove that

$$m(b-a) \le \int_{\underline{a}}^{b} f(x) dx \le \int_{a}^{\overline{b}} f(x) dx \le M(b-a)$$
 4

- 2. (a) Define partition and tagged partition of a closed interval [a, b]. 1+1=2
 - (b) Let f be a bounded function defined on [a, b]. If Q is a refinement of a partition P, then prove that

$$U(f, P) \ge U(f, Q)$$

3

Or

Prove that a bounded function $f \in R[a, b]$, if for $\varepsilon > 0$, there exists a partition P such that

$$U(f, P) - L(f, P) < \varepsilon$$

- (c) Answer any four of the following questions: 5×4=20
 - (i) Give an example with explanation that a function which is Riemann integrable but neither monotonic nor continuous.
 - (ii) Prove that a continuous function is integrable.

(iii) Let $f, g \in R[a, b]$. Prove that f + g is integrable and that

$$\int_{a}^{b} (f+g) dx = \int_{a}^{b} f dx + \int_{a}^{b} g dx$$

(iv) Let $f:[a, b] \to \mathcal{R}$ be differentiable and f' is integrable on [a, b]. Then prove that

$$\int_a^b f'(x)dx = f(b) - f(a)$$

(v) Show that if a function f is continuous on [a, b], then there exists $c \in [a, b]$ such that

$$\int_a^b f(x) \, dx = f(c)(b-a)$$

3. (a) Show that the improper integral

$$\int_0^\infty e^{-x} dx$$

exists.

2

(b) Show that

$$\int_0^1 x^{n-1} e^{-x} \, dx$$

is convergent, if n > 0.

3

(c) Prove that

$$B(m, n) = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}$$

Or

Prove that

$$\int_0^\infty e^{-x^2} dx = \frac{1}{2} \Gamma\left(\frac{1}{2}\right)$$

- **4.** (a) What is the difference between pointwise convergence and uniform convergence?
 - (b) Give an example to prove that if a sequence of functions $\{f_n\}$ converges uniformly to a function f, then it converges pointwise to f also. But the converse is not true.

c) Show that the function defined by

$$f_n(x) = \begin{cases} 0, & -\infty < x \le 0 \\ nx, & 0 \le x \le \frac{1}{n} \\ 1, & x \ge \frac{1}{n} \end{cases}$$

converges pointwise to f(x) = 0 for $x \le 0$ and f(x) = 1 for x > 0.

- (d) Show that if $f_n: X \to \mathcal{R}$ be a sequence of uniformly convergent functions, then the sequence $\{f_n\}$ is uniformly Cauchy on X.
- (e) Let $\{f_n\}$ be a sequence of continuous functions on [a, b], and $f_n \to f$ uniformly on [a, b]. Prove that f is continuous and hence integrable on [a, b]. Hence show that

$$\int_{a}^{b} f(x) dx = \lim_{a} \int_{a}^{b} f_{n}(x) dx$$

2

(f) Find the pointwise limit of the sequence of real-valued function

$$f_n(x) = \frac{nx}{1 + n^2 x^2}, \quad x \in [0, 1]$$
 5

- (g) State and prove Weierstrass M-test for the series of functions. 5
- 5. (a) fine limit interior and limit superior.

 1+1=2
 - (b) Let R is the radius of convergence of the power series

$$\sum a_n x^n$$

Prove that the series is absolutely convergent if |x| < R and divergent if |x| > R.

(c) Find the radius of convergence of the power series

$$\frac{x}{2} + \frac{1.3}{2.5}x^2 + \frac{1.3.5}{2.5.8}x^3 + \cdots$$

(d) If a power series

$$\sum a_n x^n$$

converges to a particular value $x_0 \neq 0$, then show that it converges absolutely for every x for which $|x| \leq |x_0|$.

5
