4 SEM TDC MTMH (CBCS) C 10

2024

(May/June)

MATHEMATICS

(Core)

Paper : C-10

(Ring Theory and Linear Algebra—I)

Full Marks: 80
Pass Marks: 32

Time: 3 hours

The figures in the margin indicate full marks for the questions

- 1. (a) Define an integral domain with an example. 1+1=2
 - (b) Let R be a ring with unity 1. Show that

$$(-1)a = -a = a(-1), \forall a \in R$$
 2

- (c) Prove that a field has no proper ideals.
- (d) Prove that in a finite commutative ring with unity, every prime ideal is maximal.
- (e) Answer any two of the following questions: 5×2=10
 - (i) Let R be the ring of 2×2 matrices having the elements as real numbers. Then show that the set of matrices of the type

 $\begin{bmatrix} 0 & a \\ 0 & b \end{bmatrix}$

with a and b as real numbers is a subring of R. Give an example of a subring which is not an ideal.

(ii) Let R be a commutative ring with unity and S be an ideal of R. Show that $\frac{R}{S}$ is an integral domain if and only if S is prime.

- (iii) Show that each pair of elements in a principal ideal domain has the greatest common divisor.
- 2. (a) Define kernel of a homomorphism.
 - (b) Let C be the ring of complex numbers. Is the map $f: C \to C$ such that

$$f(x+iy)=x-iy$$

where x and y are reals, a ring homomorphism? Justify.

- (c) Let R and R' be two rings and $f: R \to R'$ be a ring homomorphism. Show that—
 - (i) f(0) = 0', where 0 is zero element of R and 0' is zero element of R';

(ii)
$$f(-a) = -f(a), \forall a \in \mathbb{R}.$$
 2+2=4

(d) Determine all ring homomorphisms from \mathbb{Z} to \mathbb{Z} where \mathbb{Z} is the ring of integers.

3

3

(e) State and prove the first theorem of isomorphism.

5

Or

If S is an ideal of a ring R and T is any subring of R, then show that

$$\frac{S+T}{S} \cong \frac{T}{S \cap T}$$

3. (a) Define a vector space.

2

- (b) Prove that a subset of a linearly independent set is linearly independent. 2
- (c) Does the set $\{(1, 1, 1), (1, 2, 3), (2, -1, 1)\}$ form a basis for \mathbb{R}^3 ? Justify.
- (d) Let W be a subspace of \mathbb{R}^4 spanned by $\{(1, -2, 5, -3), (2, 3, 1, -4), (3, 8, -3, -5)\}$ Find a basis and dimension of W.
- (e) Let W_1 and W_2 be two subspaces of V. Then show that

 $\dim(W_1 + W_2) = \dim W_1 + \dim W_2 - \dim(W_1 \cap W_2)$ 5

Or

Let V be a vector space of n-dimension and W be a subspace of V. Show that any basis $\{W_1, W_2, \cdots, W_k\}$ of W can be extended to a basis $\{V_1, V_2, \cdots, V_n\}$ of V such that $V_i = W_i, \ \forall \ 1 \le i \le k$.

- **4.** (a) What is the range space of a linear transformation?
 - (b) Prove that the map $T: \mathbb{R}^3 \to \mathbb{R}$ defined by

 $T(x, y, z) = (x, y), \quad \forall (x, y, z) \in \mathbb{R}^3$ is a linear map.

(c) Consider the map $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined by

 $T(x, y, z) = (x + y, y + z, z + x), \ \forall (x, y, z) \in \mathbb{R}^3$ Show that T is one-one and onto.

(d) Find Im T and ker T, where T is a map $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined by

 $T(x, y, z) = (x + 2y - z, y + z, x + y - 2z), \ \forall (x, y, z) \in \mathbb{R}^3$ 3+2=5

1

2

5. Answer any four of the following questions:

5×4=20

(a) Let V and W be two finite dimensional vector space, over a field F. Show that V and W are isomorphic if and only if

$$\dim(V) = \dim(W)$$

(b) Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be a linear map defined by

$$T(x, y, z) = (x + z, x - z, y), (x, y, z) \in \mathbb{R}^3$$

Prove that T is invertible and find T^{-1} .

- (c) Let V and W be two vector spaces over a field F, and let $T: V \to W$ be linear. Show that $T^{-1}: W \to V$ is linear if T is invertible.
- (d) Let $T: \mathbb{R}^3 \to \mathbb{R}^2$ and $S: \mathbb{R}^2 \to \mathbb{R}^2$ be linear and

$$T(x, y, z) = (4x, 3y, -2z)$$

and S(x, y) = (-2x, y)

Find ST.

(e) Let

 $\beta_1 = \{(1, 0), (0, 1)\}$ and $\beta_2 = \{(1, 2), (2, 3)\}$

be two bases of \mathbb{R}^2 . Find the transition matrix P from basis β_2 to basis β_1 .

(f) Let V and W be two vector spaces and $T: V \to W$ be a linear map. Show that

 $\dim V = \operatorname{rank} T + \operatorname{nullity} T$

(g) Let $\phi: \mathbb{R}^2 \to \mathbb{R}^2$ be such that

$$\phi(x, y) = (x - y, x + y), (x, y) \in \mathbb{R}^2$$

and ϕ be linear. Prove that ϕ is an isomorphism.
