Total No. of Printed Pages-8

2 SEM TDC ECOH (CBCS) C 4

2024

(May)

ECONOMICS

(Core)

Paper: C-4

(Mathematical Methods in Economics—II)

Full Marks: 80
Pass Marks: 32

Time: 3 hours

The figures in the margin indicate full marks for the questions

- 1. Choose the correct option/Answer from the following: 1×8=8
 - (a) (AB)' = ?
 - (i) A'B'
 - (ii) B'A'
 - (iii) A^{-1}
 - (iv) None of the above

- (b) Which of the following is a singular matrix?
 - (i) $A = \begin{bmatrix} 2 & 4 \\ 3 & 6 \end{bmatrix}$
 - (ii) $A = \begin{bmatrix} 4 & 4 \\ 3 & 6 \end{bmatrix}$
 - (iii) $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
 - (iv) None of the above
- (c) The expansion path of C-D production function
 - (i) intersects X-axis
 - (ii) intersects Y-axis
 - (iii) passes through the origin
 - (iv) None of the above
- (d) The cross elasticity of demand in case of complementary goods is

(Continued)

- (i) positive
- (ii) negative
- (iii) independent
- (iv) zero

- (e) The utility function of a consumer is given by $U = U(x, y) = x^a y^b$. Then $MU_x = ?$
 - (i) $\frac{bU}{y}$

(ii) $\frac{aU}{x}$

(iii) $\frac{aU}{y}$

- (iv) $\frac{bU}{x}$
- (f) The elasticity of substitution of C-D production function $Q = AL^{\alpha}K^{\beta}$ is
 - (i) B
 - (ii) a
 - (iii) 1
 - (iv) None of the above
- (g) Lagrange function is applied in
 - (i) unconstrained optimization
 - (ii) constrained optimization
 - (iii) Both (i) and (ii)
 - (iv) None of the above
- (h) Define linearly homogeneous production function.
- **2.** Answer any *four* of the following : $4\times4=16$
 - (a) Write on the first-order difference equation and its solution.
 - (b) Solve the following difference equation:

$$y_{t+1} + 3y_t = 10$$
 with $y_0 = 20$

- Given the C-D production function $Q = AL^{\alpha}K^{\beta}$. Show that it satisfies Euler's theorem.
- From the following market model, find the equilibrium quantity demanded (Q_d) using Cramer's rule:

$$Q_d = a - bP$$

$$Q_s = -c + dP$$

$$Q_d = Q_s$$

- (e) E plish the relationship between average cost and marginal cost using product rule of derivative.
- (i) Briefly explain the 3. (a) applications of first-order difference equation.
 - (ii) Given the demand and supply function as

$$3X_{dt} = 20 - P_t$$
$$3X_{st} = -20 + 7P_{t-1}$$

Find the equilibrium price, the time path, and determine, whether or not, the equilibrium is stable.

(b) In a cobweb model $Q_{dt} = a - bP_t \quad (a, b > 0)$

$$Q_{st} = -c + dP_{t-1}$$
 (c, $d > 0$)
 $Q_{dt} = Q_{st}$

 $Q_{dt} = Q_{st}$

Obtain the time path of P_t and analyse the condition for its convergence and divergence.

(i) The matrix A is defined as follows:

$$A = \begin{bmatrix} 1 & 2 \\ 3 & -4 \end{bmatrix}$$

Suppose $f(x) = 2x^2 - 3x + 5$. Find f(A).

(ii) State and prove the properties of determinant.

(i) The two commodity market models are as follows:

Market—I	Market—II
$D_1 = S_1$	$D_2 = S_2$
$D_1 = 25 - 2p_1 + p_2$	$D_2 = 20 + 2p_1 - 2p_2$
$S_1 = -5 + 4p_1$	$S_2 = -10 + 5p_2$

Obtain equilibrium prices \bar{p}_1 and \bar{p}_2 using Cramer's rule.

6

11

4

8

(ii) Solve the following national income model using matrix inversion technique:

6

11

$$Y = C + I_0 + G_0$$
$$C = a + bY$$

Cstand Y and where variables—national endogenous income and consumption expenditure, respectively, and I_0 and G_0 present the exogenously deterined investment and government expenditures. The two parameters a and b in the consumption function stand for autonomous consumption expenditure and the marginal propencity to consume (1 > b > 0)respectively.

5. (a) State and prove the properties of the CES production function.

01

(b) In a national income model

$$Y = C + I_0 + G_0$$

$$C = a + b(Y - T)$$

$$T = tY$$

where Y, C, I_0 , G_0 and T denote income, consumption, investment, government expenditure and income tax

respectively. Analyse the effect of change in autonomous consumption and the rate of tax on equilibrium national income (\overline{Y}) . 6+5=11

6. (a) A monopolist discriminates between two markets. The average revenue functions of two markets and the total cost functions are given by

$$AR_1 = 53 - 4Q_1$$

 $AR_2 = 29 - 3Q_2$
 $TC = 20 + 5Q$

such that $Q = Q_1 + Q_2$ Obtain (i) profit maximizing outputs (Q_1 and Q_2) and (ii) maximum profit. 8+3=11

Or

(b) A monopolist produces his product in two different plants and his total cost functions of the two plants are given by

$$TC_1 = 5 - 2Q_1 + Q_1^2$$

 $TC_2 = 10 - 4Q_2 + 2Q_2^2$

If the average revenue function is given by AR = 50-2Q, where $Q = Q_1 + Q_2$, find (i) profit maximizing outputs and (ii) maximum profit. 8+3=11

7. (a) Given the utility function U = 2 + x + 2y + xy and the budget constraint 4x + 6y = 94. Find the equilibrium purchase of x and y in order to maximize total utility. 8+3=11

Or

(b) A producer desires to minimize the cost of production C = 4K + 2L, where K and L are capital and labour respectively. Subject to the production function $Q = 8K^{\frac{1}{2}}L^{\frac{1}{4}}$, find the equilibrium combination K and L in order to minimize the cost of production when the output is 60.

11

the semigraph and manufact and out our A that

Shirlas Et at

ATTER STREET, WILLIAM STREET, STREET, STREET