## 2 SEM TDC MTMH (CBCS) C 3

2024

(May)

## **MATHEMATICS**

(Core)

Paper: C-3

## ( Real Analysis )

Full Marks: 80
Pass Marks: 32

Time: 3 hours

The figures in the margin indicate full marks for the questions

- 1. (a) State True or False:

  The supremum and infimum of a set may or may not belong to the set.
  - (b) Prove that the supremum of a nonempty set S of real numbers whenever it exists is unique.

3

- (c) If  $S = \left\{ \frac{4n+3}{n} : n \in \mathbb{N} \right\}$ , find inf S and  $\sup S$  if they exist.
- (d) Let S and T be non-empty subsets of  $\mathbb{R}$  with the property  $s \le t$ ,  $\forall s \in S$  and  $t \in T$ . Show that S is bounded above and T is bounded below.

Or

Prove that the countable union of countable sets is countable.

- (e) Prove that a point p is a limit point of a set S if and only if every neighbourhood of p contains infinitely many points of p.
- (f) State and prove the Archimedean property of real numbers.

Or

Prove that for any real number x, there exists an unique integer m, such that  $m \le x < m+1$ .

(g) State the order completeness property of real numbers.

(h) Show that if a < b, then  $a < \frac{1}{2}(a+b) < b$ .

- (i) If x and y are any real numbers with x < y, then prove that there exists an irrational number z such that x < z < y.
- (j) If  $I_n = [a_n, b_n], n \in \mathbb{N}$ , is a nested sequence of closed bounded intervals, then prove that there exists a number  $\xi \in \mathbb{R}$  such that  $\xi \in I_n$ .

Or

Prove that there exists a real number x, such that  $x^2 = 2$ .

- 2. (a) Write an example of a constant sequence.
  - (b) Show that the sequence  $\left\langle \frac{n}{n+1} \right\rangle$  is bounded,  $\forall n \in \mathbb{N}$ .
  - (c) Prove that every convergent sequence has a unique limit.
  - (d) Write the 3-tail of the sequence  $\langle 2, 4, 6, 8, 10, ..., 2n, ... \rangle$

2

3

3

3

(e) Let  $\langle x_n \rangle$  be a sequence of real numbers and let  $x \in \mathbb{R}$ . If  $\langle a_n \rangle$  is a sequence of positive real numbers with Lt  $\langle a_n \rangle = 0$  and if for some constant c > 0 and some  $m \in \mathbb{N}$ ,  $|x_n - x| \le ca_n$  for all  $n \ge m$ , then prove that

$$Lt_{n\to\infty} \langle x_n \rangle = x$$

$$Or$$

Prove that

$$\operatorname{Lt}_{n\to\infty}(n^{1/n})=1$$

(f) If  $X = \langle x_n \rangle$  is a convergent sequence of real numbers and if  $x_n \ge 0$ , for all  $n \in \mathbb{N}$ , then prove that

$$x = \operatorname{Lt}_{n \to \infty} \langle x_n \rangle \ge 0$$

Or

If  $X = \langle x_n \rangle$  and  $Y = \langle y_n \rangle$  are convergent sequences of real numbers, and  $x_n \leq y_n$  for all  $n \in \mathbb{N}$ , then prove that

$$\operatorname{Lt}_{n\to\infty}\langle x_n\rangle \leq \operatorname{Lt}_{n\to\infty}\langle y_n\rangle$$

(g) Let 
$$X = \langle x_n \rangle$$
 be a sequence such that  $\underset{n \to \infty}{\operatorname{Lt}} \langle x_n \rangle = x$ . Prove that  $\underset{n \to \infty}{\operatorname{Lt}} \langle |x_n| \rangle = |x|$ 

- (h) State the properties for a sequence  $\langle x_n \rangle$  of real numbers to be divergent. 2
- i) State monotone subsequence theorem. 2
- (j) Using Cauchy's criterion of convergence, establish the convergence or divergence of any two of the following sequences:

 $3 \times 2 = 6$ 

4

- (i) Sequence  $\langle x_n \rangle$ , where  $x_n = \frac{(-1)^n}{n}$
- (ii) Sequence  $(x_n)$ , where  $x_n = 1 + \frac{1}{3} + \frac{1}{5} + ... + \frac{1}{2n-1}$
- (iii) Sequence  $\langle x_n \rangle$ , where  $x_n = 1 + \frac{1}{4} + \frac{1}{7} + \dots + \frac{1}{3n-2}$
- 3. (a) Fill in the blanks:

  An infinite series in which all the terms are of the same sign is \_\_\_\_ if each term is \_\_\_\_ than some finite quantity however small.

- (b) State Cauchy's general principle of convergence for series and show that the series  $\sum_{n=1}^{\infty} \frac{1}{n}$  does not converge. 1+3=
- (c) Prove that a positive term series converges if and only if the sequence of its partial sums is bounded above.

Or

investigate the behaviour of the infinite series whose *n*th term is  $\frac{1}{|n|}$ .

- (d) State d'Alembert's ratio test.

  Is d'Alembert's ratio test stronger than
  Cauchy's root test? 2+1=3
- (e) Show that for any fixed value of x, the series  $\sum_{n=1}^{\infty} \frac{\sin nx}{n^2}$  is convergent.
- (f) Show that the series

$$x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots$$

converges absolutely for all values of x.

Or

Test the absolute convergence of the series

$$1 - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \dots$$

\*\*\*