2 SEM TDC MTMH (CBCS) C 4

2024

(May)

MATHEMATICS

(Core)

Paper: C-4

(Differential Equations)

Full Marks: 60
Pass Marks: 24

Time: 3 hours

The figures in the margin indicate full marks for the questions

- **1.** (a) Define particular solution of differential equation.
 - (b) Write the degree of the differential equation

$$\frac{d^4y}{dx^4} - \sin\left(\frac{d^3y}{dx^3}\right) = 0$$

1

(c) Show that $f(x) = 2e^{3x} - 5e^{4x}$ is a solution of the differential equation

$$\frac{d^2y}{dx^2} - 7\frac{dy}{dx} + 12y = 0$$

(d) Solve the initial value problem: 2

$$\frac{dy}{dx} = -\frac{x}{y}, \ y(3) = 4$$

(e) Solve: 2

$$(x+y+1)\frac{dy}{dx}=1$$

(f) Solve any two from the following: $3\times 2=6$

(i)
$$(x^2y - 2xy^2)dx - (x^3 - 3x^2y)dy = 0$$

(ii)
$$x\frac{dy}{dx} + (x+1)y = x^3$$

(iii)
$$(x^2 + y^2)dx - 2xy dy = 0$$
, $y(1) = 2$

2. (a) Draw the input-output compartmental diagram for exponential growth model.

Write the word equation for density dependent population growth model.

(b) Write the differential equation for the case of a single fast dissolving pill. 2

- c) Answer any two from the following:

 3×2=6
 - (i) In a sample 10% of the original number of radioactive nuclei have undergone disintegration in a period of 100 years. Find what % of the original radioactive nuclei will remain after 200 years.
 - (ii) The differential equation

$$\frac{dC}{dt} = \frac{F}{V}(C_{\rm in} - C)$$

describes the level of pollution in the lake, where V is the volume of the lake, F is the flow (in and out), C is the concentration of pollution at time t and $C_{\rm in}$ is the concentration of pollution entering the lake. If $V = 28 \times 10^6 \,\mathrm{m}^3$, $F = 4 \times 10^6 \,\mathrm{m}^3$ / month, find how long would it take for the lake with pollution concentration $10^7 \,\mathrm{parts/m}^3$ to drop below the safety threshold $(4 \times 10^6 \,\mathrm{parts/m}^3)$ if only freshwater enters the lake.

- (iii) Derive the differential equation of exponentially growth population model.
- **3.** (a) Define linear homogeneous differential equation.
 - (b) Check whether the functions x and x sin x are linearly independent or not.
 - (c) Show that e^x and e^{3x} are the solutions of the differential equation

$$\frac{d^2y}{dx^2} - 4\frac{dy}{dx} + 3y = 0$$

Also write the linear combinations of the above solution.

- (d) Answer any one of the following: 4
 - (i) If $y = \frac{1}{x}$ is a solution of

$$x^2 \frac{d^2 y}{dx^2} + 3x \frac{dy}{dx} + y = 0$$

then find the general solution.

(ii) Solve:

$$\frac{d^2y}{dx^2} - 4\frac{dy}{dx} + 3y = 2e^{3x}$$

- 4. Answer any three from the following: 5×3=15
 - (a) Solve:

$$\frac{d^2y}{dx^2} + ay = \sec ax$$

(b) Solve:

$$x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} + y = \sin \log x^2$$

(c) Solve by method of undetermined coefficient:

$$\frac{d^2y}{dx^2} - 2\frac{dy}{dx} - 3y = 2e^{4x}$$

(d) Solve by method of variation of parameter:

$$\frac{d^2y}{dx^2} + y = \tan x$$

- **5.** (a) Define equilibrium solution of a differential equation.
 - (b) Write the word equation and differential equation for predator-prey model. 2

1

3

(7)

- 6. Answer any one of the following:
 - (a) A model for the spread of a disease, where once susceptible infected, confers life-long immunity, is given by the differential equations

$$\frac{dS}{dt} = -\beta SI, \quad \frac{dI}{dt} = \beta SI - \alpha I$$

where α and β are positive constants, S(t) denotes the number of susceptibles and I(t) denotes the number of infectives at time t.

- Use the chain rule to find a relation between S and I, given the initial number of susceptibles and infectives are s_0 and i_0 , respectively.
- (ii) Find and sketch directions of trajectories in the phase plane.
- (b) A simple model for a battle between two armies red and blue, where both the army used aimed fire, is given by the coupled differential equations

$$\frac{dR}{dt} = -a_1 B, \frac{dB}{dt} = -a_2 R$$

where R and B are the number of soldiers in the red and blue army

respectively and a_1 and a_2 are positive constants.

- (i) Use the chain rule to find a relation between R and B, given the initial number of soldiers for the two armies are r_0 and b_0 , respectively.
- (ii) Draw a rough sketch of phaseplane trajectories.
