2 SEM FYUGP MTHC2

2024

(May/June)

MATHEMATICS

(Core)

Paper: MTHC2

(Real Analysis and Differential Equations)

Full Marks: 80
Pass Marks: 24

Time: 3 hours

The figures in the margin indicate full marks for the questions

SECTION-A

(Real Analysis)

UNIT—I

1. (a) সত্য নে অসত্য লিখা :

Write True or False :
 বন্ধ অন্তৰ্গল [x, x] ক আমি একক সংহতি {x} হিচাপে
 লিখিব পাৰো।

The closed interval [x, x] can be written as the singleton set $\{x\}$.

(b) বাস্তৱ সংখ্যা (\mathbb{R})ৰ পূৰ্ণতাৰ ধৰ্মটো লিখা। 1 State the completeness property of \mathbb{R} .

1

- (c) যদি $a \in \mathbb{R}$ যাতে $a \cdot a = a$, তেন্তে প্ৰমাণ কৰা যে হয় a = 0 অথবা a = 1. 2 If $a \in \mathbb{R}$ such that $a \cdot a = a$, then prove that either a = 0 or a = 1.
- (d) যদি $a \in \mathbb{R}$ আৰু $a \neq 0$, তেন্তে প্ৰমাণ কৰা যে $a^2 > 0$.

 If $a \in \mathbb{R}$ and $a \neq 0$, then prove that $a^2 > 0$.
- (e) সংহতিৰ সীমা বিন্দুৰ সংজ্ঞা আগবঢ়োৱা। বলজান'-ওৱাৰাচট্টেছৰ সূত্ৰটো (সংহতিৰ বাবে) লিখা। I+1=2 Define limit point of a set. Write the Bolzano-Weierstrass theorem for set.

ধৰা হ'ল S এটা \mathbb{R} ৰ অৰিক্ত আৰু উচ্চ পৰিবদ্ধ উপসংহতি আৰু $a \in \mathbb{R}$ যি কোনো এটা সংখ্যা। যদি $a+S=\{a+s: s\in S\}$, তেন্তে প্ৰমাণ কৰা যে

$$\sup(a+S) = a + \sup S$$

Let S be a non-empty subset of \mathbb{R} such that S is bounded above. Let $a \in \mathbb{R}$ be any number. If $a+S=\{a+s: s\in S\}$, then prove that

 $\sup(a+S) = a + \sup S$

অথবা / Or

যদি y>0, তেন্তে দেখুওৱা যে $n_y\in\mathbb{N}$ ৰ কাৰণে $n_y-1\leq y\leq n_y$. If y>0, then show that there exists $n_y\in\mathbb{N}$ such that $n_y-1\leq y\leq n_y$.

(Continued)

24P/1137

(g) যদি x আৰু y দুটা যি কোনো বাস্তৱ সংখ্যা যাতে x < y, তেন্তে দেখুৱাব লাগে যে আমি এটা $r \in \mathbb{Q}$ পায় যাতে x < r < y.

If x and y are any real numbers with x < y, then show that there exists a rational number $r \in \mathbb{Q}$ such that x < r < y.

(h) প্রমাণ কৰা যে বাস্তর সংখ্যাৰ সংহতি $\mathbb R$ গণনীয় নহয়। 5 Show that the set of real numbers $\mathbb R$ is not countable.

অথবা / Or

দেখুওৱা যে এনেকুৱা কোনো পৰিমেয় সংখ্যা r পোৱা নাযায় যাতে $r^2 = 2$.

Show that there does not exist a rational number r such that $r^2 = 2$.

UNIT-II

- 2. (a) একদিষ্ট অভিসাৰী উপপাদ্যটো লিখা।

 State monotone convergence theorem.
 - (b) শ্ৰেণীৰ বাবে ক'চিৰ নিৰ্ণায়কটো লিখা।
 State Cauchy criterion for series.
 - (c) প্ৰমাণ কৰা যে এটা বাস্তৱ অনুক্ৰমৰ অতিবেছি এটা সীমাহে থাকিব পাৰে। Prove that a sequence in $\mathbb R$ can have at most one limit.

24P/1137

(Turn Over)

- (d) যদি x_n অনুক্রমটো x লৈ অভিসাৰী আৰু y_n অনুক্রমটো y লৈ অভিসাৰী হয়, তেন্তে দেখুওৱা যে x_ny_n অনুক্রমটো xy লৈ অভিসাৰী হ'ব।

 If x_n and y_n are two sequences such that x_n converges to x and y_n converges to y,
- (e) দেখুওৱা যে x_n অনুক্রমটো অপসাৰী য'ত $x_n = 1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n}$

then show that $x_n y_n$ converges to xy.

Show that the sequence x_n with $x_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$

অথবা / Or

দেখুওৱা যে x_n অনুক্রমটো অভিসাৰী য'ত

$$x_n = \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{n+n}$$

Show that the sequence x_n with

$$x_n = \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{n+n}$$

is convergent.

 \mathfrak{D} $\sum rac{1}{n^{1+rac{1}{n}}}$ শ্ৰেণীটো অপসাৰী বুলি দেখুওৱা।

Show that the series $\sum rac{1}{n^{1+rac{1}{n}}}$ is divergent.

(g) তলৰ যি কোনো এটা শ্ৰেণীৰ অভিসাৰিতা পৰীক্ষা কৰা : Test the convergence of any one of the following series :

(i)
$$\sum_{n=1}^{\infty} \frac{n^2-1}{n^2+1} x^n, x>0$$

(ii)
$$\sum_{n=1}^{\infty} \frac{1}{n^2 - n + 1}$$

SECTION-B

(Differential Equations)

UNIT-III

- 3. (a) অৱকল সমীকৰণৰ বিশেষ সমাধান বুলিলে কি বুজা ?

 What do you mean by particular solution of a differential equation?
 - (b) তলৰ অৱকল সমীকৰণটোৰ এটা অনুকলনীয় উৎপাদক উলিওৱা:

Find an integrating factor of the following differential equation:

$$t^2 \frac{dx}{dt} + x = 1$$

(c) তলৰ অৱকল সমীকৰণটো সমাধান কৰা : 2
Solve the following differential equation :

$$\frac{dy}{dx} = e^{x-y} + x^2 e^{-y}$$

1

1

(d) দেখুওৱা যে, $f(x)=2\sin x+3\cos x$ হ'ল $\frac{d^2y}{dx^2}+y=0$ অৱকল সমীকৰণৰ এটা বহিলিখিত

সমাধান।

Show that $f(x) = 2\sin x + 3\cos x$ is an explicit solution of the differential equation

$$\frac{d^2y}{dx^2} + y = 0$$

(e) তলৰ যি কোনো তিনিটা অৱকল সমীকৰণ সমাধান কৰা :

3×3=9

2

Solve any *three* of the following differential equations:

(i)
$$(xy+2x+y+2) dx + (x^2+2x) dy = 0$$

(ii)
$$\frac{dy}{dx} + 3y = 3x^2e^{-3x}$$

(iii)
$$\frac{dy}{dx} - \frac{y}{x} = -\frac{y^2}{x}$$

(iv) $(y \sec^2 x + \sec x \tan x) dx +$

 $(\tan x + 2y) dy = 0$

(Continued)

UNIT-IV

4. (a) n মাত্রাবিশিষ্ট সমমাত্র বৈখিক অৱকল সমীকৰণৰ সংজ্ঞা
দিয়া।

Define nth order homogeneous linear
differential equation.

- (b) যদি এটা ধ্ৰুৱক সহগযুক্ত সমমাত্ৰ ৰৈখিক অৱকল সমীকৰণৰ সহায়ক সমীকৰণৰ মূল $2\pm 3i$ হয়, তেন্তে অৱকল সমীকৰণটোৰ সাধাৰণ বা সামূহিক সমাধান নিৰ্ণয় কৰা।

 If the auxiliary equation has the root $2\pm 3i$, then write the general solution of the corresponding homogeneous linear differential equation with constant coefficients.
- (c) দ্বিমাত্রিক সমমাত্র ৰৈখিক অৱকল সমীকৰণৰ বাবে
 সমাৰোপন নীতিটো লিখা আৰু প্রমাণ কৰা। 1+3=4
 State and prove the principle of superposition for homogeneous linear
 differential equation of 2nd order.
- (d) nটা ফলনৰ এটা সংহতিৰ বাবে ৰনস্কিয়ানৰ সংজ্ঞা আগবঢ়োৱা। দেখুওৱা যে,

$$\frac{d^3y}{dx^3} - 2\frac{d^2y}{dx^2} - \frac{dy}{dx} + 2y = 0$$

অৱকল সমীকৰণৰ সমাধানকেইটা ক্রমে e^x , e^{-x} আৰু e^{2x} বৈখিকভাৱে স্থতন্ত্র। অৱকল সমীকৰণটোৰ সামূহিক সমাধানটো লিখা। 1+3+1=5

Define Wronskian for a set of n functions. Show that the solutions e^x , e^{-x} and e^{2x} of the differential equation

$$\frac{d^3y}{dx^3} - 2\frac{d^2y}{dx^2} - \frac{dy}{dx} + 2y = 0$$

are linearly independent. Write its general solution.

(e) অনিৰ্ণেয় সহগ পদ্ধতি ব্যৱহাৰ কৰি

$$\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + y = x^2$$

অৱকল সমীকৰণটো সমাধান কৰা।

6

Use the method of undetermined coefficients to solve $\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + y = x^2$.

অথবা / Or

প্ৰাচলৰ ভেদ/বিচৰণ নিয়ম প্ৰয়োগ কৰি সমাধান কৰা Use the method of variation of parameters to solve

$$\frac{d^2y}{dx^2} + n^2y = \sec nx$$

(f) সমাধান কৰা (যি কোনো দুটা) : Solve (any two) : $4 \times 2 = 8$

(i)
$$x^2 \frac{d^2y}{dx^2} - 3x \frac{dy}{dx} + 4y = 2x^2$$

(ii)
$$\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + 2y = e^{3x}$$

(iii)
$$\frac{d^4y}{dx^4} + m^4y = 0$$

SHIVE THE SHIP X X X VENDER TO SHIP