5 SEM TDC CHMN (CBCS) C 12

2024

(November)

CHEMISTRY

(Core)

Paper: C-12

(Physical Chemistry, Quantum Chemistry and Spectroscopy)

Full Marks: 53
Pass Marks: 21

Time: 3 hours

The figures in the margin indicate full marks for the questions

- 1. Choose the correct answer from the following: 1×4=4
 - (a) The degeneracy of a particle of mass m confined in a 3-D box having energy level equal to $\frac{19h^2}{8ma^2}$ is
 - (i) 7

(ii) 19

(iii) 6

(iv) 3

- (b) The wavefunction $\psi = e^{ax^2}$ in the range $-\infty < x < \infty$ where a is a finite quantity is
 - (i) acceptable wave function
 - (ii) not acceptable wave function
 - (iii) eigenfunction of $\frac{d}{dx}$
 - (iv) a normalized wave function
- (c) Intersystem crossing refers to
 - (i) transition between two states of a system
 - (ii) radiationless transition between states of different spin multiplicities
 - (iii) transition between excited and ground states with same multiplicities
 - (iv) All of the above

d) The number of NMR signal formed by

$$CH_3$$
— CH_2 — C — CH_3 in low resolution

is

- (i) 2
- (ii) 3
- (iii) 4
- (iv) 5
- **2.** Answer any four from the following: $2 \times 4 = 8$
 - (a) State whether the function

$$\psi = \sin(k_1 x) \sin(k_2 y) \sin(k_3 y)$$

is an eigenfunction of the operator ∇^2 . If it is an eigenfunction, find the eigenvalue.

- (b) Determine the normalization constant of the function $\psi = x^2$ in the range $0 \le x \le k$, where k is a constant.
- (c) Microwave studies are done only in gaseous state. Explain.

- (d) Explain why the nuclei ¹H and ¹³C are suitable for NMR investigation.
- (e) What is the basic difference between fluorescence and phosphorescence?
- (f) Determine the value of $[x, P_x]$.
- 3. Answer any four from the following: $4\times4=16$
 - (a) Solve the Schrödinger wave equation for a particle having mass m moving freely in a 1-D box of length a. Find out the energy expression.

 3+1=4
 - (b) Write the conditions for acceptability of wave function. Prove that $\tan x$ is not acceptable wave function in the range $0 \le x \le \pi$.
 - (c) Write Schrödinger's wave equation for rigid rotator system and separate the variables.
 - (d) (i) Write down the Schrödinger's wave equation for H-atom in Cartesian and polar coordinates. 1+1=2

- (ii) What is zero-point energy?

 Calculate zero-point energy of a molecule if it is considered as a simple harmonic oscillator. 1+1=2
- (e) (i) Prove that the eigenvalues of Hermitian operator are real. 2
 - (ii) Calculate the value of $\left[x, \frac{d^2}{dx^2}\right]$.
- (f) Sketch the variation of radial wave function and radial probability distribution against the distance from the nuclei (i) 2S and (ii) 2P. 2+2=4
- **4.** Answer any four from the following: $4\times4=16$
 - (a) Show that the lines in the rotational spectra of a diatomic molecule are equispaced under rigid rotator approximation.
 - (b) The C—H vibration (stretching) in chloroform occurs at 3000 cm⁻¹. Calculate the C—D frequency (stretching) in deuterated chloroform. Suppose force constant remains same during isotopic substitution.

4

4

(c)	(i) What are P, Q and R branches of vibration-rotation spectra?	3
	(ii) Why is electronic spectrum a band spectrum?	1
(d)	Write short notes on the following: 2×2	=4
	(i) Larmor frequency	
	(ii) Bathochromic shift	

- (e) (i) Why is TMS used as a reference standard in NMR spectra? 2

 (ii) Draw the high and low resolution
 - (ii) Draw the high and low resolution

 NMR spectra of the ethanol. 2
- **5.** Answer any *two* questions from the following : $4\frac{1}{2} \times 2=9$
 - (a) What are photochemical reactions? Write the difference between photochemical and thermal reactions. Discuss the reason for low and high quantum yields of photochemical reaction. 1/2+2+2=41/2
 - (b) State and explain Lambert-Beer law.

 Write the significance of molar extinction coefficient.

 4½

(Continued)

(c)	(i)	Write short notes on any one of the	e
		following:	

- 1. Actinometry
- 2. Chemiluminescence
- (ii) A certain system absorbs 3×10^{20} quanta of light per second. On irradiation for 20 minutes, 0.02 mole of the reactant was found to have reacted. Calculate the quantum yield of the reaction.

2

**