3 SEM TDC PHYH (CBCS) C 6

2024

(Nov/Dec)

PHYSICS

(Core)

Paper: C-6

(Thermal Physics)

Full Marks: 53
Pass Marks: 21

Time: 3 hours

The figures in the margin indicate full marks for the questions

1. Choose the correct answer:

1×5=5

- (a) If the temperature of the source of the Carnot engine is increased, then its efficiency
 - (i) increases
 - (ii) decreases
 - (iii) remains same
 - (iv) first increases then decreases

- (b) The thermodynamic process in which there is no heat exchange between system and surroundings is
 - (i) isothermal
 - (ii) isobaric
 - (iii) isochoric
 - (iv) adiabatic
- (c) If a liquid crystallises into solid, the entropy will
 - (i) increase
 - (ii) decrease
 - (iii) remain same
 - (iv) become zero
- (d) The relationship between translational kinetic energy (E) of a gas and the temperature (T) is
 - (i) $3E = 2NK_BT$
 - (ii) $3E = 4NK_BT$
 - (iii) $2E = 3NK_BT$
 - (iv) $2E = NK_BT$
- (e) The SI unit of thermal conductivity is
 - (i) Wm⁻¹K⁻¹
 - (ii) Wm⁻²K⁻¹
 - (iii) $W^{-1}mK^{-1}$
 - (iv) WmK-1

2.	Answer	any	five	of	the	following	:	2×5=10
		-	9			0		

- (a) Write the expressions for compressibility and expansion coefficients.
- (b) Distinguish between reversible and irreversible processes.
- (c) "The entropy of the universe is always increasing." Justify the statement.
- (d) Calculate the most probable speed for oxygen molecules at 300 K. Given, mass of O_2 molecule is $5 \cdot 31 \times 10^{-26}$ kg and $K_B = 1 \cdot 38 \times 10^{-23}$ JK⁻¹.
- (e) Find an expression for entropy in an isothermal-isochoric process in terms of Helmholtz free energy.
- (f) Obtain a relation between thermal conductivity and viscosity.
- **3.** Establish a relation between C_p and C_v with the help of first law of thermodynamics.

Or

Discuss the concept of temperature in the light of zeroth law of thermodynamics.

- 4. State and prove the Carnot theorem.
- 5. Write the expression for work done in a Carnot cycle and hence, obtain an expression for efficiency of a Carnot engine.

5

5

6.	Establish the Clausius inequality.	4							
	Or								
	Discuss how entropy changes in an irreversible process.								
7.	Deduce the first and second <i>TdS</i> equations, where the symbols have their usual meanings.	4							
8.	The van der Waal's constants of hydrogen are $a = 2 \cdot 47 \times 10^{-2} \text{ Nm}^4 \text{mol}^{-2}$ and $b = 26 \cdot 5 \times 10^{-6} \text{ m}^3 \text{mol}^{-1}$ Calculate the temperature of inversion. Given								
	$R = 8.3 \text{ JK}^{-1} \text{mol}^{-1}$.	4							
9.	Derive an expression for Boyle temperature on the basis of van der Waals' equation. Or	5							
	Obtain the law of corresponding states using reduced variables.	5							
10.	Write short notes on any two of the following:	2=8							
	(a) Brownian motion								
	(b) Adiabatic demagnetization								
	(c) Thermodynamic scale of temperature								
P25-	-2000/319 3 SEM TDC PHYH (CBCS) (2 6							