3 SEM TDC MTMH (CBCS) C 5

2024

(Nov/Dec)

MATHEMATICS

(Core)

Paper: C-5

(Theory of Real Functions)

Full Marks: 80 Pass Marks: 32

Time: 3 hours

The figures in the margin indicate full marks for the questions

- Define cluster point of a set. 1 1. (a)
 - (b) Write the sequential criterion for limits. 2
 - Using the definition of limit, evaluate (c)

$$\lim_{x \to 3} \frac{2x+3}{4x-9}$$

or succession of the Or Prove that $\lim_{x\to 0} \sin\left(\frac{1}{x}\right)$ does not exist in the set of real numbers.

- **2.** (a) What do you mean by one-sided limits of a function f at a point C?
 - (b) Discuss the kind of discontinuity of the function

$$f(x) = \begin{cases} \frac{x - |x|}{x}, & \text{when } x \neq 0 \\ 2, & \text{when } x = 0 \end{cases}$$

1

(c) State and prove squeeze theorem. 3

Or

Apply squeeze theorem to show that $\lim_{x\to 0} \frac{\sin x}{x} = 1$

(d) Show that the function f(x) defined on \mathbb{R} , the set of real numbers, by $f(x) = \begin{cases} x, & \text{when } x \text{ is irrational} \\ -x, & \text{when } x \text{ is rational} \end{cases}$

is continuous only at x = 0.

Or

Let $A, B \in \mathbb{R}$, let $f: A \to \mathbb{R}$ be continuous on A and let $g: B \to \mathbb{R}$ be continuous on B. If $f(A) \subseteq B$, then prove that the composite function $g \circ f: A \to \mathbb{R}$ is continuous on A.

(Continued)

- 3. (a) State the preservation of intervals theorem.
 - (b) State and prove location of roots theorem.
 - (c) Prove that if a function is continuous in a closed interval, then it is bounded therein.

THE STATE OF STATE OF

- 4. (a) A function continuous on a closed interval may not be uniformly continuous on that interval. State true or false.
 - (b) Prove that $\sin x$ is uniformly continuous on $[0, \infty]$.

Or

Prove that

$$f(x) = \sin \frac{1}{x}, \quad x \neq 0$$
$$= 0 \quad , \quad x = 0$$

is not uniformly continuous on [0, ∞].

4

1

5. (a) Continuity is the sufficient condition for derivability of a function at a point.

State true or false.

1

(b) Write the statement of interior extremum theorem.

(c) Prove that if $f: I \to \mathbb{R}$ has a derivative at $C \in I$, then f is continuous at C.

3

2

inhated at it and or raid bands a

Examine the differentiability of the function |x| at x = 0.

6. (a) A convex function on an open interval is necessarily continuous. State true or false.

1

(b) Give an example to show that a convex function need not be differentiable at every point of its domain.

2

3

(c) Write the geometrical interpretation of Rolle's theorem.

Or

Show that the Rolle's theorem is not applicable to the function $f(x) = \tan x$ in the interval $(0, \pi)$.

(d) State and prove Darboux's theorem.

7. (a) If $\phi'(x) = \psi'(x)$ in an interval, then prove that $\phi(x)$ and $\psi(x)$ differ by a constant in that interval.

2

3

(b) Prove that

 $\lim_{h \to 0} \frac{f(a+h) - 2f(a) + f(a-h)}{h^2} = f''(a)$

provided f''(x) is continuous.

6 1

If f(x) and $\phi(x)$ are continuous in $a \le x \le b$ and differentiable in a < x < b such that f'(x) and $\phi'(x)$ never vanish for the same value of x, then show that

$$\frac{f(\xi) - f(a)}{\phi(b) - \phi(\xi)} = \frac{f'(\xi)}{\phi'(\xi)}$$

where $a < \xi < b$.

(c) Show that $\log (1+x)'$ lies between $x - \frac{x^2}{2}$ and $x - \frac{x^2}{2(1+x)}$, $\forall x > 0$.

3. (a) Write the condition of validity of expansion of e^x in powers of x in infinite series.

- (b) If $f(x) = x^2$, $\phi(x) = x$, then find a value of ξ in terms of a and b in Cauchy's mean value theorem.
- (c) Show that the Cauchy's remainder after n terms in the expansion of log(1 + x) in powers of x is

$$(-1)^{n-1} \frac{x^n}{1+\theta x} \left(\frac{1-\theta}{1+\theta x}\right)^{n-1}, \ 0 < \theta < 1$$

(d) State and prove Cauchy's mean value theorem.

Or

Deduce Taylor's theorem from Cauchy's mean value theorem.

- 9. (a) What do you mean by a relative extremum of a function at a point?
 - (b) Show that $x^3 6x^2 + 12x 3$ is neither a maximum nor a minimum when x = 2.
 - (c) Give an example of a convex function which is not differentiable at a point. 2

(d) Expand the following functions in powers of x in infinite series stating the conditions under which the expansion is valid (any two): $4 \times 2 = 8$

- (i) $\sin x$
- (ii) $(1+x)^n$
- (iii) $\frac{1}{1+x}$

**

2

5