1 SEM TDC CHMH (CBCS) C 2

2024

(November)

CHEMISTRY

(Core)

Paper: C-2

(Physical Chemistry)

Full Marks: 53
Pass Marks: 21

Time: 3 hours

The figures in the margin indicate full marks for the questions

- 1. Choose the correct answer from the .
 following: 1×3=3
 - (a) The temperature at which ethane molecule has the same root-mean square velocity of methane molecule at 27 °C is
 - (i) 292·5 °C
 - (ii) 289·5 °C
 - (iii) 280·0 °C
 - (iv) 294.0 °C

- (b) Which of the following liquids will have highest boiling point?
 - (i) CH₃OH
 - (ii) CHCl₃
 - (iii) H2O
 - (iv) CH3COCH3
- Potassium crystallizes in a b.c.c. lattice. The number of unit cells present in 2 mole of K metal is
 - (i) $2 \times 6.02 \times 10^{23}$
 - (ii) 6.02×10²³
 - (iii) $3 \times 6.02 \times 10^{23}$
 - (iv) None of the above
- 2. Answer any four questions from following: $2 \times 4 = 8$
 - Define van der Waals' constants a and b and give their significance.
 - Explain why heat capacities of gases at constant pressure are more than at constant volume.
 - Explain the structure of NaCl crystal from X-ray crystallography.

- Dissociation of ethanoic acid increases when concentration decreases. Explain why.
- What is the relation between solubility and solubility product of a $A_x B_y$ type of electrolyte?

- 3. Answer any two questions from following: $7 \times 2 = 14$
 - (i) Deduce the reduced equation of state from van der Waals' equation of states and define the law of corresponding states from it. 3+1=4
 - (ii) Deduce Boyle's law from kinetic gas equation. What is Boyle's temperature? 2+1=3

Define viscosity of gases. Viscosity of gases increases as temperature is increased. Explain.

Describe critical phenomenon from (b) Andrew's isotherm.

> (ii) Define the critical constants Pc, Tc and V.

3

2

3

(iii) Show that

 $\frac{RT_c}{P_cV_c} = \frac{8}{3}$

(c) (i) What are mean-free path, collision diameter and collision frequency of a gas molecule? Explain the effect of temperature on mean-free path.

11/2+1=21/2

(ii) State and explain law of equipartition of energy taking a suitable example. 1+2½=3½

(iii) What is compression factor z of gases?

UNIT-II

4. Answer any one question from the following:

(a) (i) What are the different kinds of intermolecular forces present in liquids? Discuss in detail.

(ii) Boiling point of CH₃OH is more than CH₃COCH₃. Give reasons. 2

(b) (i) Name two factors on which viscosity of liquid depend. What is the SI unit of coefficient of viscosity? 1+1=2

(ii) Describe a method of determination of viscosity of a liquid at laboratory.

Or

The time of flow of H_2O is 59·2 seconds at 25 °C and for a liquid is 46·2 seconds at the same temperature. If the densities of water and the liquid are $1\cdot 0$ g cm⁻³ and $0\cdot 867$ g cm⁻³ respectively, what is the viscosity of the liquid? (Given, $\eta_{H_2O} = 0\cdot 00895$ poise)

UNIT-III

- 5. Answer any *two* questions from the following: $4\frac{1}{2} \times 2 = 9$
 - (a) (i) State the law of rational indices.

 What are Miller indices? If a crystal plane intersects the crystallographic axes in the ratio 1:-1:2, what is its Miller indices? 1+1+1/2=21/2
 - (ii) What do you understand by point group in crystal system? What is the total number of point groups present in crystal lattice? 1+1=2

(Continued)

3

(Turn Over)

3

(b) What are nematic and smectic liquid crystals? Discuss their differences.

		ntion two applications of liquid stals. 2+1½+1=4½
(c)	<i>(i)</i>	What are the various axes of symmetry and plane of symmetry present in simple cubic system? 1+1½=2½
arej Presidenti	(ii)	Define <i>p</i> -type and <i>n</i> -type semiconductors with suitable examples. 2
		Unit—IV
	wer wing	any two questions from the 7×2=14
(a)	(i)	Solubility product of $Ag_2CrO_4 = 1.3 \times 10^{-11} M^3$. What is its solubility?
	(ii)	In salt analysis in group II H ₂ S is passed in presence of HCl, while in group IV H ₂ S is passed in alkaline medium. Explain.
	(iii)	What is common ion effect? Discuss with a suitable example.
17		

(b)	<i>(i)</i>	Equal volumes of $0.08~M~CaCl_2$ and $0.02~M~Na_2SO_4$ solutions are mixed at room temperature. Will there be precipitation of $CaSO_4$? $[K_{sp}~CaSO_4 = 2.4 \times 10^{-5}~M^2]$	2
	(ii)	What are acid base indicators? Name one indicator to be used in a titration of weak acid with a strong base.	2
	(iii)	Derive an expression for degree of hydrolysis, hydrolysis constant and pH for an aqueous solution of a salt of weak acid and strong base.	3
(c)	(i)	Calculate pH of an aqueous solution of $0.02 M$ CH ₃ COONa. [Given, pK _a = 4.74]	2
	(ii)	pH of a 10^{-7} M HCl is less than 7. Give reasons.	2
	(iii)	What are buffer solutions? Derive an expression for pH of an acidic buffer.	2=3
		Or .	
		Discuss the mechanism of acidic buffer. What is buffer capacity?	
		2+1	l=3
