4 SEM TDC CHMH (CBCS) C 8

me that

2025

(May/June)

CHEMISTRY

(Core)

Paper: C-8

(Inorganic Chemistry)

Full Marks: 53

Pass Marks: 21

Time: 3 hours

The figures in the margin indicate full marks for the questions

1. Select the correct answer:

1×6=6

- (a) The common oxidation state of lanthanides is
 - (i) +2
 - (ii) +3
 - (iii) +4
 - (iv) Both +2 and +4

- (b) Which of the following does not belong to lanthanides?
 - (i) Am
 - (ii) Pm
 - (iii) Sm
 - (iv) Tm
- (c) Which of the following is labile?
 - (i) [Fe(CN)₆]³-
 - (ii) $[Fe(H_2O)_6]^{2+}$
 - (iii) [Cr(CN)6]3-
 - (iv) [Mn(CN)6]4-
- (d) Which of the following is paramagnetic?
 - (i) Fe(CO)5
 - (ii) [Ni(CN)₄]²⁻
 - (iii) [Co(NH₃)₆]³⁺
 - (iv) $[Fe(NH_3)_6]^{2+}$

- (e) The oxidation state of Fe in haemoglobin is
 - (i) 0
 - (ii) +2
 - (iii) +3
 - (iv) None of the above
- (f) Japanese itai-itai disease is caused by the poisoning of
 - (i) Pb
 - (ii) Cd
 - (iii) Hg
 - (iv) As

UNIT-I

- 2. Answer the following questions:
 - (a) Write the name and formula of each of the following types of ligand: 1+1=2
 - (i) One asymmetric bidentate ligand
 - (ii) One hexadentate ligand

 $2 \times 4 = 8$

(b)	What is spectrochemical series? Write one application of the spectrochemical series. 1+1=2
(c)	Write the IUPAC names of the following compounds: 1+1=2
	(i) Na ₃ [Co(CN) ₅ NO]
	(ii) [(NH ₃) ₅ Co—NH ₂ —Co(NH ₃) ₅]Cl ₃
(d)	Draw the structures of all possible isomers of $[Co(en)_3]^{3+}$ ion.
Ansv	wer any <i>two</i> questions : 3×2=6
(a)	On the basis of crystal field theory, explain the splitting of <i>d</i> -orbitals in an octahedral complex.
(b)	Show the crystal field splitting of $[Fe(H_2O)_6]^{2+}$. Calculate its spin only magnetic moment. $2+1=3$
(c)	Determine the structure of $[Ni(CN)_4]^{2-}$ in the light of valence bond theory. Discuss its magnetic property. $2+1=3$
Ansv	wer any <i>two</i> questions : 4×2=8
(a)	(i) What are chelating ligands? Discuss with a suitable example.
	(ii) Give the structural formulae of the following compounds: 2+2=4
	Pentaammineazidocobalt (III) sulphate and Tetrafluoro oxochromate (IV) ion

2000	What do you mean by CFSE (Crystal Field Stabilization Energy)? Calculate CFSE for the following octahedral systems:	=4
	(i) d ³	
	(ii) d ⁵ high-spin	
	(iii) d ⁶ low-spin	
(c)	(i) Explain ambidentate and macrocyclic ligands with suitable example.	2
	(ii) Explain why tetrahedral complexes are generally high-spin.	2
bina omi	UNIT—II	
Ans	wer any three questions: 3×3	=9
(a)	Write any three differences between first and second transition series elements.	3
(b)	Give reasons why (i) Sc3+ is more stable	

than Sc2+ and (ii) transition elements exhibit colour. Explain with example.

5.

P25/1250

11/2+11/2=3

- (c) Give three applications of Latimer diagram.
- (d) Explain the stability of various oxidation states of transition metals in terms of their e.m.f. values. What is Latimer diagram? 2+1=3
- 6. Find the number of unpaired electrons and calculate spin only magnetic moment in the following complexes: 2×2=4
 - (a) $[Cr(H_2O)_6]^{3+}$
 - (b) [Mn(CN)₆]⁴⁻

UNIT-III

7. Answer any two questions:

2×2=4

- (a) What do you mean by lanthanide contraction?
- (b) Eu and Yb exhibit +2 oxidation state. Explain.
- (c) Give any two differences between lanthanides and actinides.

UNIT-IV

8. Answer any two questions:

4×2=8

(a) Discuss the structure and function of carbonic anhydrase. 2+2=4

- (b) What is sodium-potassium ion pump?
 Discuss its biological roles. 1+3=4
- (c) Write a note on mercury poisoning.

 How can it be treated? 2+2=4
