Total No. of Printed Pages-19

4 SEM TDC GEMT (CBCS) 4.1/4.2/4.3°

2025

(May/June)

MATHEMATICS

(Generic Elective)

Full Marks: 80
Pass Marks: 32

Time: 3 hours

The figures in the margin indicate full marks for the questions

All symbols have their usual meanings

Paper: GE-4.1

(Algebra)

UNIT-1

1.	Answer	the	following	questions	1
----	--------	-----	-----------	-----------	---

(a) Fill in the blank:

The number of symmetries of a rectangle is _____.

(2)

	TO ONE DESCRIPTION OF THE PROPERTY.	
(b)	State True or False :	1
	The set πQ is a group under usual addition.	
(c)	Show that in a group G , $(a^{-1})^{-1} = a$ for any $a \in G$.	2
(d)	Find the inverse of the element $-j$ in the group of quaternions.	2
(ej	Prove that if $(ab)^2 = a^2b^2$ in a group G, then $ab = ba$.	3
(f)	Let G be a group such that the square of any element is unity. Show that G is Abelian.	3
<i>(g)</i>	Describe the symmetries of	
137	Describe the symmetries of a square.	4
	Describe the circle group.	
(h)	Prove that the set $\{1, 2,, n-1\}$ is a group under multiplication if and only if n is prime.	4
	Or	
	Prove that the set of all 3×3 matrices with real entries of the form	
	$\begin{bmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{bmatrix}$	
	is a group under matrix multiplication	. 4

Unit-2

2.	Answer the following questions:		
	(a)	State Lagrange's theorem.	1
	(b)	State true or false : Subgroup of a cyclic group is cyclic.	1
•	(c)	Let $H = \{(1), (12)(34), (13)(24), (14)(23)\}$. How many left cosets of H in S_4 are there?	1
	(d)	Show that the centre of a group is an Abelian subgroup.	2
	(e)	Let G be a group of order 60. What are the possible orders for the subgroups of G? Justify.	2
	(f)	Consider the subgroup $H = \{\pm 1, \pm i\}$ of the group of quaternions. Find any three left cosets of H .	3
	(g)	Suppose that $ G = pq$, where p and q are primes. Prove that every proper subgroup of G is cyclic.	3
	(h)	Let H be a subgroup of a group G . Show that if index of H in G is 2, then H is normal in G .	3
	(i)	Consider $H = \{1, 11\}$ of $U(30)$. Find the quotient group $U(30)/H$.	4

(Turn Over)

P25/1282

(j)
$$H = \left\{ \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} : a, b, d \in \mathbb{R}, ad \neq 0 \right\}$$

Examine whether H is a normal subgroup of GL(2, R).

Or

Prove that the factor group of an Abelian group is Abelian.

Show the intersection of two normal subgroups is also a normal subgroup.

Or

Let G be a group and let G' be the commutator subgroup of G. Prove that

- (i) G' is normal in G;
- (ii) if H is a subgroup of G and $H \supseteq G'$, then H is normal in G.

UNIT-3

- 3. Answer the following questions:
 - (a) State True or False: 1+1=2
 - (i) Every ring has a multiplicative inverse.

(ii) Every element in a ring has an additive inverse.

- (b) Show that the polynomial 2x+1 in $Z_4[x]$ has a multiplicative inverse.
- (c) Justify that the ring of all 2×2 matrices over reals under usual addition and multiplication of matrices is a noncommutative ring.
- (d) List all polynomials of degree 2 in $Z_2[x]$.
- (e) Show that the non-zero elements of a field form a group under multiplication. 4
- (f) Show that the ring $Z[\sqrt{2}] = \{a+b\sqrt{2} : a, b \in Z\}$ is an integral domain.
- (g) Consider the equation $x^2 5x + 6 = 0$. Find all solutions of this equations in Z_8 .
- (h) Let $S = \{a+ib\}a, b \in Z, b$ is even. Show that S is a subring of Z[i] but not an ideal of Z[i].

Or

Prove that the intersection of any set of ideals of a ring is an ideal.

٠,

5

2

2

3

(i) If A is an ideal of a ring R and unity belongs to A, prove that A = R.

Or

Let R be the ring of all continuous functions from R to R. Show that $A = \{f \in R : f(0) = 0\}$ is an ideal of R.

Paper: GE-4.2

(Application of Algebra)

- তলৰ যি কোনো দুটা প্ৰশ্নৰ উত্তৰ দিয়া : 6×2=12
 Answer any two of the following questions :
 - (a) প্ৰমাণ কৰা যে, (m, b, r, k, λ) প্ৰাচলৰ সৈতে এটা BIBD সমমীতিয় হয় যদি আৰু কেৱল যদিহে r = k হয়।

Prove that a BIBD with parameters (m, b, r, k, λ) is symmetric if and only if r = k.

(b) ধৰাহওক, p>2 আৰু p এটা মৌলিক সংখ্যা। তেন্তে প্ৰমাণ কৰা যে তাত (p-1)/2টা দ্বিঘাত ৰেচিডিউ মতুল' p থাকে আৰু

$$Q_p = \left\{ res_p(n^2) \mid 1 \le n \le \frac{p-1}{2} \right\}$$

Let p be a prime number greater than 2. Then prove that there are (p-1)/2 quadratic residues modulo p, and

$$Q_p = \left\{ res_p(n^2) \mid 1 \le n \le \frac{p-1}{2} \right\}$$

ধৰাহওক, F; 6t +1 মাত্ৰা (order)-ৰ সীমিত ফিল্ড, আৰু a হৈছে F-ৰ এটা প্ৰিমিটিভ মৌল আৰু ধৰাহওক $S_i = \{a^i, a^{2t+i}, a^{4t+i}\}, \qquad i = 0, 1, ..., t-1.$ তেন্তে দেখুওৱা যে $S_0,...,S_{t-1}$ সংহতিবোৰে (6t+1, 3, 1) পাৰ্থক্য সংহতি পৰিয়ালৰ যোগাত্মক গ্ৰুপ F-ৰ এটা t-ফ'ল্ড গঠন কৰে।

> Let F be a finite field of order 6t+1 and let a be a primitive element in F. Let $S_i = \{a^i, a^{2t+i}, a^{4t+i}\}, \qquad i = 0, 1, ..., t-1.$ Then show that the sets $S_0,...,S_{t-1}$ form a t-fold (6t+1, 3, 1) difference set family in the additive group F.

2. BIBD-ৰ ইন্সিডেন্স মেট্ৰিক্স-ৰ ওপৰত এটা চমু টোকা লিখা। 4 Write a short note on incidence matrix of a BIBD.

অথবা / Or

ধৰাহওক, $G=Z_7$ অখণ্ড সংখ্যা মডুল' 7-ৰ এটা যোগাত্মক গ্ৰুপ, আৰু $S = \{1, 2, 4\}$. দেখুওৱা যে, S হৈছে G-ৰ এটা পাৰ্থক্য সংহতি, আৰু ইয়াৰ প্ৰাচলবোৰ নিৰ্ণয় কৰা।

Let $G = Z_7$ be the additive group of integers modulo 7, and $S = \{1, 2, 4\}$. Show that S is a difference set in G, and find its parameters.

- 3. তলৰ যি কোনো দুটা প্ৰশ্নৰ উত্তৰ দিয়া : $6 \times 2 = 12$ Answer any two of the following questions:
 - Parity-check matrix

$$H = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 0 \end{bmatrix}$$

সৈতে দ্বৈত ৰৈখিক ক'ড C নিৰ্ণয় কৰা আৰু C-ৰ generator মেট্রিন্স G नিখা। লগতে Dual ক'ড С⊥-ৰ মান নিৰ্ণয় কৰা।

Find the binary linear code C with parity-check matrix

$$H = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 0 \end{bmatrix}$$

and write a generator matrix G of C. Also find the dual code C^{\perp} .

জেনেৰেটৰ মেটিক্স G–ৰ সৈতে দৈত ক'ডৰ বাবে উন্নত সজ্জা লিখা আৰু 01111 ভেক্টৰটো ডিক'ড কৰা, য'ত

$$G = \begin{bmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 \end{bmatrix}$$

Write a standard array for the binary code with the generator matrix

$$G = \begin{bmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 \end{bmatrix}$$

and decode the received vector 01111.

P25/1282

(c) প্রমাণ কৰা যে, $F[x]_n$ –ৰ উপসংহতি C এটা চাইক্লিক ক'ড হ'ব যদি আৰু কেৱল যদিহে C, $F[x]_n$ ৰিং-ৰ এটা আদর্শ হয়।

Prove that a subset C of $F[x]_n$ is a cyclic code if and only if C is an ideal of the ring $F[x]_n$.

- 4. বা যে, এটা দৈত ক'ড (7, 16, 3) (যদিহে থাকে) এটা নিপুত ক'ড।

 Show that a binary code (7, 16, 3) (if it exists) is perfect.
- 5. (a) দেখুওৱা যে

$$\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 7 & 5 & 1 & 6 & 4 & 2 & 3 \end{pmatrix}$$

আৰু

$$\beta = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 4 & 1 & 6 & 2 & 3 & 7 & 5 \end{pmatrix}$$

বিন্যাস দুটাৰ গঠন চাইক্লিক আৰু একে। যদি $\beta = \sigma\alpha\sigma^{-1}$ হয়, তেন্তে σ –ৰ মান নিৰ্ণয় কৰা। 4 Show that the permutations

$$\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 7 & 5 & 1 & 6 & 4 & 2 & 3 \end{pmatrix}$$

and

$$\beta = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 4 & 1 & 6 & 2 & 3 & 7 & 5 \end{pmatrix}$$

have the same cyclic structure. Find σ such that $\beta = \sigma \alpha \sigma^{-1}$.

(b) অসমৰূপী গ্ৰাফৰ জেনেৰেটিং ফলনৰ ওপৰত এটা চমু টোকা লিখা।

Write a short note on generating functions for non-isomorphic graph.

(c) এখন আয়তাকাৰ ডাইনিং টেবুলত 6 জন মানুহ এনেভাবে বহি আছে যাতে, দুজন টেবুলৰ দীঘল দৈৰ্ঘ্যফালে
আৰু বাকী কেইজন টেবুলৰ চুটি দৈৰ্ঘ্যফালে মুখামুখিকে। m-টা ৰংৰ নেপকিনৰ পৰা তেওঁলোকক দিয়া
হ'ল। তেওঁলোকৰ মাজত সকলো সম্ভৱ ৰংৰ নেপকিন
বিতৰণৰ সকীয়া আৰ্হিৰ সংখ্যা বিচাৰি উলিওৱা :

1 2 6 3 5 4

A rectangular dining table seats six persons, two along each longer side and one on each shorter side. A colored napkin, having one of m given colors, is placed for each person.

Find the number of distinct patterns among all possible color assignments:

6	1	2	3
	5	4	

অথবা / Or

পলিয়া-ৰ উপপাদ্যটো উল্লেখ আৰু প্ৰমাণ কৰা। State and prove Polya's theorem.

- 6. (a) ধৰাহওক, A আৰু B দুটা শূন্যক মেট্ৰিক্স যাৰ মাত্ৰা একে। যদি AB = BA, তেন্তে প্ৰমাণ কৰা যে, A+B এটা শূন্যক মেট্ৰিক্স। Let A and B be nilpotent matrices of the same size. If A and B commute, then show that A+B is nilpotent.
 - (b) $n \times n$ নির্ণায়কৰ মান নির্ণয় কৰা :

 Compute the $n \times n$ determinant :

(c) Frobenius-König-ৰ উপপাদ্যটো উল্লেখ আৰু প্ৰমাণ কৰা।

State and prove Frobenius-König theorem.

অথবা / Or ৪

যদি A এটা $m \times m$ হাদামার্দ মেট্রেক্স হয় যাৰ J_n হৈছে এটা উপ-মেট্রেক্স, তেন্তে প্রমাণ কবা যে $m \ge n^2$. (J_n হৈছে $m \times m$ মেট্রেক্স যাৰ প্রত্যেক মৌলবোৰ সমান আৰু সেইবোৰ সকলো 1.)

If A is an m-square Hadamard matrix that contains a J_n as a submatrix, then prove that $m \ge n^2$. (J_n denotes the m-square matrix whose entries are all equal to 1.)

7. যি কোনো দুটা প্ৰশ্নৰ উত্তৰ দিয়া : 8×2=16

Answer any two of the following questions :

(a) 3×2 মেট্রিঙ্গ $A = \begin{bmatrix} 2 & 3 \\ 0 & 4 \\ 0 & 1 \end{bmatrix}$ –ৰ আনুমানিক বিপৰীত

মেট্রিক্সটো উলিওৱা।

Find the approximate inverse of the

$$3 \times 2 \text{ matrix } A = \begin{bmatrix} 2 & 3 \\ 0 & 4 \\ 0 & 1 \end{bmatrix}.$$

(b) ধৰাহওক, A=LDU তলৰ তিনিটা মেট্ৰিক্সৰ গুণফল

$$\begin{bmatrix} 1 & \cdots & 0 \\ 2 & i & 0 \\ 3 & 0 & 1 \\ 2 & 0 & 5 \end{bmatrix} \begin{bmatrix} 2 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 3 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 & 4 & 3 & 3 & 3 & 3 \\ 0 & 0 & 1 & 2 & 2 & 2 & 2 & 2 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 6 \end{bmatrix}$$

সমাধান কৰা, LDU x = y য'ত y-ৰ মান

Let A = LDU be the product of

$$\begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 0 & 1 \\ 2 & 0 & 5 \end{bmatrix} \begin{bmatrix} 2 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 3 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 & 4 & 3 & 3 & 3 & 3 \\ 0 & 0 & 1 & 2 & 2 & 2 & 2 & 2 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 6 \end{bmatrix}$$

Solve LDU x = y for the values

$$\begin{bmatrix} 2 \\ 9 \\ 6 \\ 3 \end{bmatrix}, \begin{bmatrix} 2 \\ 9 \\ 6 \\ 4 \end{bmatrix}$$
 for y .

(c) তলৰ মেট্ৰিক্সটো ৰ'-ৰিদিউসদ এশ্বিলন ফৰ্মলৈ নিবলৈ
ৰ'-বিদাকশ্যন এলগ'বিথম ব্যৱহাৰ কৰা :

$$\begin{bmatrix}
0 & 3 & -6 & 6 & 4 & -5 \\
3 & -7 & 8 & -5 & 8 & 9 \\
3 & -9 & 12 & -9 & 6 & 15
\end{bmatrix}$$

Use row-reduction algorithm to reduce the following matrix into row-reduced echelon form:

Paper: GE-4.3

(Combinatorial Mathematics)

Find 8P_2 . 1. (a) 1 Write the principle of exclusion. 1 A girl has 5 pencils of different colours. In how many ways she can arrange them? 2 Find how many 2-digit numbers can be formed by using first 4 prime numbers. 2 From a team of 14 boys, find how many football teams can be formed. 2 Show that ${}^{n}C_{r} + {}^{n}C_{r-1} = {}^{n+1}C_{r}$, if $1 \le r \le n$. Or Find the number of distinguishable words that can be formed from the letters of VACANT. Write the principle of pigeonhole. 1 State true or false: 1 If there are more than m objects and there are m boxes, then there will be at least 1 box with no object.

(c)	Find how many integers between 1 and 250 are—	
	(i) divisible by 3;	
	(ii) divisible by 3 and 7. 2+2	=4
(d)	Let A, B are finite sets. Show that $n(A \cup B) = n(A) + n(B) - n(A \cap B)$	4
	Or	
•	Find the number of integer solutions of	
	$x_1 + x_2 + x_3 = 24$, such that $1 \le x_1 \le 5$,	
	$12 \le x_2 \le 18$, $-1 \le x_3 \le 12$.	
(a)	Write the generating function for 1, 1, 1, 1,	1
(b)	Define a generating function.	2
(c)	Find the co-efficient of x^4 in $(1-x)^{-2}$.	4
(d)	A recursively defined sequence	

 $a_n = 3a_{n-1} - 1$, $\forall n \ge 1$ and $a_0 = 2$. Find

Or

Determine the set of integers n for

which $n^2 + 19n + 92$ is a square.

an explicit formula for a_n .

3.

(19	1

4.	Ans	Answer any <i>two</i> of the following questions: 5×2=10		
	(a)	Find the number of binary sequences of length n having no 11.		
	(b)	Prove that there exist $2^n - n$ numbers that have n digits made up only of numbers 1 and 2 and contain each digit at least once.		
	(c)	If $n+1$ integers are chosen, show that there exist two integers whose difference is divisible by n , where n is a positive integer.		
5.	(a)	Write the number of portions of 6.	2	
	(b)	Determine how many integers between 1 and 60 are divisible by at least one of 2, 3 and 5.	5	
	(c)	Find the number of integers between 1 and 10000 that are neither perfect squares nor perfect cubes.	5	
		Or		
		Let numbers 1 to 20 are placed in any order around a circle. Show that the sum of some 3 consecutive numbers must be at least 32.		
6.	(a)	Write the number of ways to arrange n distinct objects in a circle.	1	

	(b)	Find the number of arrangements of any 3° letters from the 11 letters of the word COMBINATION.
	, (c)	Find the number of ways to arrange $n \ge 3$ differently coloured beads in a necklace.
	• (đ)	Find the number of different necklace that contain four red and three blue beads.
7.	(a)	Define a combinatorial design.
	(b)	Write one property of uniform design.
	(c)	Write an example of Latin square of order 3.
	(d)	Answer any two of the following: 4×2=
		(i) Prove that interchanging two rows of a Latin square produce a Latin square.
		(ii) Show that there is no BIBD (balanced incomplete block design) with parameters $b = 12$, $k = 4$,
		$v=16$ and $r=3$ (λ not specified).
		(iii) Determine the cycle index of the dihedral group D_4 .
