4 SEM TDC BUMT (CBCS) C 409

2025

(May/June)

COMMERCE

(Core)

Paper: C-409-

(Business Mathematics)

Full Marks: 80

Pass Marks: 32

Time: 3 hours

The figures in the margin indicate full marks for the questions

- 1. যি কোনো পাঁচটা প্ৰশ্নৰ উত্তৰ দিয়া : 2×5=10

 Answer any five questions :
 - (a) মান নিৰ্ণয় কৰা : Find the value of

 $\begin{bmatrix}
 2 & 1 & 0 \\
 3 & 0 & 2 \\
 5 & 1 & -2
 \end{bmatrix}$

(b) মৌলকক্ষৰ সংজ্ঞা দিয়া। Define matrix.

\$ SEM FOC BUMP (CHOS) C 469

(c) মান নির্ণয় কৰা : Find the value of

$$\lim_{x\to 2} \frac{x^2 - 4}{x - 2}$$

- (d) $\frac{dy}{dx}$ ৰ জ্যামিতিক সংজ্ঞা লিখা।

 Give the geometrical interpretation of $\frac{dy}{dx}$.
- (e) কিন্তিৰ নগদ মূল্য বুলিলে কি বুজা?

 What do you mean by present worth of annuities?
- (f) LPP বুলিলে কি বুজা?
 What do you mean by LPP?
- (g) u=f(x,y) ফলনৰ আংশিক অৱকলজ $\frac{\partial u}{\partial x}$ আৰু $\frac{\partial u}{\partial y}$ ব ধাৰণা দিয়া। $\text{If } u=f(x,y) \text{ is a function, then define the partial derivatives } \frac{\partial u}{\partial x} \text{ and } \frac{\partial u}{\partial y} \, .$

2. (a) (i) যদি
$$\begin{bmatrix} 1 & x+y \\ x-y & 0 \end{bmatrix} = \begin{bmatrix} 1 & 3 \\ 1 & 0 \end{bmatrix}$$
 হয়, তেনেহ'লে x আৰু y ৰ মান কিমান? 2

If $\begin{bmatrix} 1 & x+y \\ x-y & 0 \end{bmatrix} = \begin{bmatrix} 1 & 3 \\ 1 & 0 \end{bmatrix}$, then find the values of x and y .

(ii) প্ৰমাণ কৰা যে

(iii) সমাধান কৰা

- Prove that $\begin{vmatrix}
 1 & a & a^{2} \\
 1 & b & b^{2} \\
 1 & c & c^{2}
 \end{vmatrix} = (b-c)(c-a)(a-b)$
 - Solve $\begin{vmatrix} 4 & x & 6 \\ 3 & 2 & 1 \\ -5 & 7 & x \end{vmatrix} = 0$
- (iv) যদি $A = \begin{bmatrix} 2 & 1 & 3 \\ 1 & 4 & 2 \\ 5 & -2 & 6 \end{bmatrix}$ হয়, তেনেহ'লে A^{-1} কিমান?

If
$$A = \begin{bmatrix} 2 & 1 & 3 \\ 1 & 4 & 2 \\ 5 & -2 & 6 \end{bmatrix}$$
, then what will

be A^{-1} ?

जथवा / Or

- (b) (i) কক্ষ আৰু নিৰ্ণায়কৰ মাজত থকা নাৰ্থক্যবিলাক কি কি?

 Write the differences between a matrix and a determinant.
 - (ii) প্ৰমাণ কৰা যে Prove that

$$\begin{vmatrix} a-b & b-c & c-a \\ b-c & c-a & a-b \\ c-a & a-b & b-c \end{vmatrix} = 0$$

(iii)
$$A+B=\begin{bmatrix}1&0&2\\2&2&2\\1&1&2\end{bmatrix}$$
 আৰু
$$A-B=\begin{bmatrix}1&4&4\\4&2&0\\-1&-1&2\end{bmatrix}$$

হ'লে, A আৰু Bৰ মান কিমান?

Find the values of A and B, when

$$A + B = \begin{bmatrix} 1 & 0 & 2 \\ 2 & 2 & 2 \\ 1 & 1 & 2 \end{bmatrix}$$
 and

$$A - B = \begin{bmatrix} 1 & 4 & 4 \\ 4 & 2 & 0 \\ -1 & -1 & 2 \end{bmatrix}$$

(iv) যদি
$$A = \begin{bmatrix} 2 & 1 & -2 \\ 3 & 1 & 4 \\ 1 & 2 & 3 \end{bmatrix}$$
 আৰু I এটা একক

মৌলকক্ষ হয়, তেনেহ'লে প্রমাণ কৰা যে AI = IA

$$AI = IA$$
.

If $A = \begin{bmatrix} 2 & 1 & -2 \\ 3 & 1 & 4 \\ 1 & 2 & 3 \end{bmatrix}$ and I is an identity matrix, then prove that

identity matrix, then prove that AI = IA.

3. (a) (i) যদি
$$f(x)=e^x$$
, তেনেহ'লে প্ৰমাণ কৰা যে $f(a)\cdot f(b)=f(a+b)$. 2

If $f(x)=e^x$, then prove that $f(a)\cdot f(b)=f(a+b)$.

P25/1254

(Continued)

P25/1254

(Turn Over)

(ii) কোনো এটা বিন্দুত এটা ফলনৰ অস্তিত্ব থকাৰ চৰ্তবিলাক কি কি?

What are the conditions for the existence of the limit of a function at a point?

(iii) মান নির্ণয় কবা :

Evaluate:

$$\lim_{x \to 0} \frac{\sqrt{2 + x^2} - \sqrt{2 - x^2}}{x^2}$$

(iv) প্ৰমাণ কৰা যে $x^3 + \frac{1}{x^3}$ ফলণৰ বৃহত্তম মান ক্ষুদ্ৰতম মানতকৈ কম। 5

Prove that the maximum value of the function $x^3 + \frac{1}{x^3}$ is less than its minimum value.

অথবা / Or

denie word medi , xintam ordensbi

(b) (i) যদি f(x) = 2x² + 5x - 7 হয়, তেনেহ'লে f(1), f(-1)ৰ মান কিমান?
 If f(x) = 2x² + 5x - 7, then what are the values of f(-1) and f(1)?

(ii) মান নির্ণয় কৰা :

Find the value of

$$\lim_{x \to 2} \frac{x^2 - 3x + 2}{x^2 + x - 6}$$
 3

(iii) যদি $y=\sqrt{\dfrac{1+x}{1-x}}$ হয়, তেনেহ'লে $\dfrac{dy}{dx}$ ৰ মান

If $y = \sqrt{\frac{1+x}{1-x}}$, then find $\frac{dy}{dx}$.

(iv) এটা কোম্পানীয়ে প্রতিদিনে x একক তামৰ উৎপাদন কৰোঁতে মুঠ খৰচ হয়

$$TC = \frac{1}{3}x^3 - 5x^2 + 6x + 55$$

দৈনিক উৎপাদনৰ পৰিমাণ কিমান একক হ'লে কোম্পানীত মুঠ খৰচৰ পৰিমাণ আটাইতকৈ কম হ'ব?

A company produces x units of copper per day at a total cost of

$$TC = \frac{1}{3}x^3 - 5x^2 + 6x + 55$$

Find the output level at which total cost will be minimum.

3

4

- 4. (a) (i) ফলনৰ আংশিক অৱকলজ বুলিলে কি বুজা? 2
 What do you mean by the partial derivative of a function?
 - (ii) তলত দিয়াবোৰৰ আংশিক অৱকলজবোৰ $\frac{\partial u}{\partial x}$ আৰু $\frac{\partial u}{\partial y}$ নিৰ্ণয় কবা :

ind partial derivatives $\frac{\partial u}{\partial x}$ and $\frac{\partial u}{\partial y}$ of the following:

$$1. \quad u = x^2 + y$$

$$2. \quad u = 6x^2y$$

(iii) যদি
$$u = \frac{y}{z} + \frac{z}{x} + \frac{x}{y}$$
, প্ৰমাণ কৰা যে
$$x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} + z \frac{\partial u}{\partial z} = 0$$

If
$$u = \frac{y}{z} + \frac{z}{x} + \frac{x}{y}$$
, prove that
$$x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} + z \frac{\partial u}{\partial z} = 0$$

(iv) ইউলাৰৰ সমগোত্ৰীয় ফলনৰ সূত্ৰটো লিখা। $u = \frac{xy}{x+y}$ ফলনৰ বাবে প্ৰমাণ কৰা যে u এটা সমগোত্ৰীয় ফলন। 2+3=5

Write Euler's theorem on homogeneous function. Verify Euler's theorem for the function $u = \frac{xy}{x+y}$.

অথবা / Or

(b) (i) $u=x^2+y^2+3xy$ ফলনটো সমগোত্রীয় হয় বুলি প্রমাণ করা। 2

Verify that the function $u=x^2+y^2+3xy$ is a homogeneous function.

(ii) $u = \log(x^2 + y^2)$ ফলনটোৰ মুঠ অৱকলজ du উলিওৱা।

For the function $u = \log(x^2 + y^2)$, find the total derivative du.

(iii) যদি $f(x,y) = x^2y^2 + x^5 + y^6$ এটা ফলন হয়, তেন্তে f_{xx} , f_{xy} , f_{yx} , f_{yy} কি হ'ব? 4

If $f(x,y) = x^2y^2 + x^5 + y^6$, then find f_{xx} , f_{xy} , f_{yx} , f_{yy} .

3

- (iv) যদি $u=x^2y+y^2z+z^2x$ এটা ফলন হয়, তেন্তে প্রমাণ কৰা যে $u_x+u_y+u_z=(x+y+z)^2$. If $u=x^2y+y^2z+z^2x$, then show that $u_x+u_y+u_z=(x+y+z)^2$.
- 5. (a) (i) কাৰ্যকৰী সূত আৰু নামমাত্ৰ সূত্ৰ মাজৰ সম্বন্ধটো
 আ।

 What is the relation between
 effective rate of interest and
 nominal rate of interest?
 - (ii) কিন্তিৰ বিভিন্ন প্ৰকাৰসমূহ কি কি?

 What are the different types of annuities?

(iv) 25 বছৰৰ পিছত 1,00,000 টকাৰ ডিবেঞ্চাৰ পৰিশোধ কৰাৰ বাবে বছৰি 4% চক্ৰবৃদ্ধি হাৰ সূতত কমপক্ষে বছৰি কিমান টকাকৈ জমা কৰিব লাগিব?

Debentures of ₹ 1,00,000 are to be redempted after 25 years. At 4% PA rate of compound interest, what minimum amount is to be saved every year?

5

3

অথবা / Or

- (b) (i) কিন্তিৰ নগদ মূল্য বুলিলে কি বুজা? 2

 What do you mean by present worth of annuities?
- (ii) 3,000 টকাৰ 4% হাৰ সুতত 2 বছৰৰ সৰল
 সুত আৰু চক্ৰবৃদ্ধি সুতৰ পাৰ্থক্য কিমান?
 What is the difference between
 2 years' simple interest and
 compound interest on ₹ 3,000 at
 4% PA?
- (iii) বছৰি 4% কাৰ্যকৰী সুতৰ হাৰৰ সমতুল্য 3 মহীয়া নামমাত্ৰ সুতৰ হাৰ কিমান?

What is the nominal rate of interest PA payable quarterly which is equivalent to the effective rate 4% PA?

If the population of a city increases every year by 2% of total population at the beginning of that year, in how many years will the total increase of population be 40%?

- 6. (a) (i) LPPৰ দ্বৈততা বুলিলে কি বুজা?

 What do you mean by duality of an LPP?
 - (ii) LPPৰ সমাধানৰ বাবে ৰৈখিক পদ্ধতিৰ বিষয়ে
 বৰ্ণনা কৰা।

 Describe graphic method used to
 solve LPP.

(iii) এটা কোম্পানীয়ে দুবিধ বস্তু A আৰু Bৰ উৎপাদনৰ বাবে প্ৰয়োজনীয় যন্ত্ৰপাতি-ঘন্টা, মজদূৰ আৰু কেঁচামালৰ বিৱৰণ তলৰ তালিকাত দিয়া ধৰণৰ। এক একক A আৰু এক একক Bৰ পৰা লাভৰ পৰিমাণ ক্ৰমাত 3 টকা আৰু 4 টকা। সমস্যাটোক LPPৰ আকাৰে প্ৰকাশ কৰা:

A company produces two products A and B. The amount of machine hours, labour and raw materials required are given in the following table. Profits from each unit of A and B are \mathbb{Z} 3 and \mathbb{Z} 4 respectively. Formulate the LPP:

চলক Variable	উৎপাদন Product	যন্ত্রপাতি-ঘন্টা (ঘন্টাত) Machine-hours (in hr)	মজদুৰ Labour	কেঁচামাল Raw Material	লাভ Profit
x	A	4	4	1	3
y	В	2	6	_ 1	4
পভ্য Available		100	180	.40	

(iv) তলত দিয়া LPPৰ বৈখিকভাৱে সমাধান কৰা : 5
Solve the following LPP graphically :
ন্যুনতম মান নির্ণয় কৰা (Minimize)

Z=2x+3yসাপেকে (subject to) $6x+y \ge 36$ $x+4y \ge 12$ $2x+y \ge 10$ $x, y \ge 0$

অথবা / Or

- (b) (i) LPPৰ সাধাৰণ গাণিতিক আৰ্হিটো লিখা।

 Write the general mathematical model for LPP.
 - (ii) LPPৰ মৌলিক সমাধানৰ বিষয়ে লিখা। 3
 Write about basic solution of LPP.
 - (iii) LPPৰ সীমাবদ্ধতাৰ বিষয়ে আলোচনা কৰা। 4
 Discuss about the limitations of LPP.
 - (iv) এটা কোম্পানীয়ে তিনিবিধ বস্তু A, B আৰু Cৰ উৎপাদন কৰিব পাৰে আৰু প্ৰতিবিধৰ পৰা পোৱা মুঠ লাভৰ পৰিমাণ ক্রমে 18 টকা, 12 টকা আৰু 24 টকা। এই বস্তুবিলাক উৎপাদন কৰোঁতে দুটা মেচিন M_1 আৰু M_2 ৰ প্রয়োগ কৰিব লাগে। প্রত্যেকটো মেচিনৰ প্রয়োগকাল তলত দিয়া ধৰণৰ :

A company produces three products A, B and C and net profit available from them are ≥ 18 , ≥ 12 and ≥ 24 respectively. To produce these two machines M_1 and M_2 are to be engaged. Requirement of each machine is given below:

			বস্ত		
		Product			+
	N. 1	A	В	. C	উপলব্ধি Available
মেচিন	M_1	14	13	15	2000
Machine	M_2	12	12	14	2500

অধিকতম লাভৰ বাবে এটি LPP প্রস্তুত কৰা। Prepare an LPP to maximize profit.

5

* * *

(Continued)