1 SEM TDC CHMH (CBCS) C 1

2019

(December)

CHEMISTRY

(Core)

Paper: C-1

(Inorganic Chemistry)

Full Marks: 53
Pass Marks: 21

Time: 3 hours

The figures in the margin indicate full marks for the questions

- **1.** Choose the correct answer from the following: 1×6=6
 - (a) Heisenberg's uncertainty principle is

(i)
$$\Delta x \cdot \Delta P = \frac{h}{4\pi m}$$

(ii)
$$\Delta x \cdot \Delta P = \frac{h}{mV}$$

(iii)
$$\Delta x \cdot \Delta P \ge \frac{h}{4\pi}$$

(iv)
$$\Delta x \cdot \Delta P \leq \frac{h}{4\pi}$$

(b) The standard electrode potentials of four electrodes are

 $E^{\circ}(V)$: -0.76 -0.40 0.80 -0.44

Which of the following cells is not feasible?

- (i) Zn | Zn²⁺ | | Cd²⁺ | Cd
- (ii) $Fe|Fe^{3+}||Zn^{2+}|Zn$
- (iii) Cd|Cd²⁺||Ag⁺|Ag
- (iv) Fe|Fe³⁺||Ag⁺|Ag
- (c) The electronegativity of C, N, P and Si increases in the order
 - (i) C < N < Si < P
 - (ii) N < Si < C < P
 - (iii) Si < P < C < N
 - (iv) P < Si < N < C
- (d) Which of the following has the highest lattice energy?
 - (i) BeO
 - (ii) MgO
 - (iii) CaO
 - (iv) SrO

- (e) The geometrical shape of ClF₃ molecule is
 - (i) pyramidal
 - (ii) trigonal planar
 - (iii) T-shape
 - (iv) tetrahedral
- (f) Which of the following is paramagnetic?
 - (i) O2
 - (ii) CO
 - (iii) NO+
 - (iv) CN-
- 2. Answer the following questions: 2×9=18
 - (a) What are normalized and orthogonal wave functions? 1+1=2
 - (b) Write Schrödinger's wave equation and give the meanings of the symbols used there. 1+1=2
 - (c) Arrange H₂O, H₂S, H₂Se and H₂Te in the increasing order of bond angle, giving the proper explanation for this trend.

(d)	What do you mean by ionization potential? Why is the value of second ionization potential higher than the first ionization potential? 1+1=2
(e)	Define electron affinity. Electron affinity value increases from nitrogen to fluorine in the periodic table. Explain giving reason.
(f)	Which of the following orbitals are not possible and why?

(g) Using VSEPR theory, predict the structures of the following: $1\times2=2$

1p, 2s, 2p and 3f

- (i) SF₄
- (ii) XeF2
- (h) Using Fazans' rule, explain that "AlF₃ is high-melting solid while AlCl₃ is lowmelting volatile solid".
- (i) Arrange the following in the increasing order of bond length:

 O_2 , O_2^- , O_2^+ , O_2^{2+}

2

2

3.	Answer any	y two of the	following	questions	: 4×2=8

- (a) (i) State and explain the principles applied to build up the electronic configuration of nitrogen atom.
 - (ii) Determine the values of n, l, m and s for the valence shell electron of potassium.
- (b) Derive de Broglie equation. Calculate the wavelength associated with a moving electron having kinetic energy 1.375×10^{-25} J. ($h=6.626\times10^{-34}$ J-s) $_{2+2=4}$
- (c) (i) Write the radial and angular wave functions for hydrogen atom. 2
 - (ii) Write a note on contour boundary. 2
- **4.** Answer any *two* of the following questions: $3\times2=6$
 - (a) What is effective nuclear charge?

 Explain on the basis of Slater's rule,
 why 4s orbital is filled earlier than 3d
 orbital taking potassium atom as an
 example.

 1+2=3

2

2

- (b) What do you mean by electronegativity of an element? Calculate the electronegativity of fluorine using Allred-Rochow equation. (Covalent radius of fluorine = 0.72 Å) 1+2=3
- (c) Nitrogen has positive electron gain enthalpy whereas oxygen has negative. However, oxygen has lower ionization enthalpy than nitrogen. Explain.

5. Answer any *two* of the following questions:

 $3 \times 2 = 6$

3

- (a) What do you mean by percentage of ionic character? HBr molecule has H—Br bond length 1·41×10⁻¹⁰ m and its dipole moment is 0·79×10⁻²⁹ cm.
 Calculate the percentage of ionic character of HBr molecule. (Given, electronic charge = 1·602×10⁻¹⁹ C) 1+2=3
- (b) What do you mean by hydrogen bond?

 What are the different types of hydrogen bond? Explain why o-hydroxybenzaldehyde is a liquid whereas p-hydroxybenzaldehyde is a solid.

 1/2+1+11/2=3

- What do you mean by bond order (c) of a molecule? The bond dissociation energy of C₂ (599 kJ mol⁻¹) decreases slightly on forming C₂⁺ (513 kJ mol⁻¹) and increases greatly on forming C2 (818 kJ mol⁻¹). Why? 1+2=3
- 6. Write short notes on any two of the following: 21/6×2=5
 - (a) Solvation energy
 - (b) Defects in solids
 - (c) Mulliken-Jaffe electronegativity scales
- 7. What is standard electrode potential? Explain two important applications of its inorganic reaction. 1+11/2+11/2=4

* * *