1 SEM TDC CHMH (CBCS) C 2

2019

(December)

CHEMISTRY

(Core)

Paper: C-2

(Physical Chemistry)

Full Marks: 53
Pass Marks: 21

Time: 3 hours

The figures in the margin indicate full marks for the questions

- **1.** Choose the correct answer from the following: $1 \times 3=3$
 - (a) The critical temperature is that temperature
 - (i) at which a gas behaves ideally
 - (ii) above which a gas can be easily liquefied
 - (iii) below which a gas can be liquefied by pressure alone
 - (iv) at which a gas cannot be liquefied

- (b) The gases which have the same kinetic energy at a given temperature and pressure are
 - (i) H₂ and N₂
 - (ii) N2 and CH4
 - (iii) CH4 and N2
 - (iv) All of the above
- (c) Water is a liquid at room temperature because it
 - (i) has high dipole moment of 1.85 D
 - (ii) is a symmetrical molecule
 - (iii) is extensively H-bonded with other molecules
 - (iv) has large dispersion forces
- 2. Answer any four questions from the following: 2×4=8
 - (a) Xe has $P_c = 58.0$ atm and $T_c = 289.7$ K. Determine its van der Waals' constants a and b.
 - (b) Out of n-pentane and neo-pentane (both are isomers of pentane) which has higher boiling point and why?

- (c) Silver crystallizes in a face-centred cubic lattice with all the atoms at the lattice points. The length of the edge of the unit cell as determined by X-ray diffraction studies is found to be 4.077×10⁻⁸ cm. The density of silver is 10.5 g cm⁻³. Calculate the atomic mass of silver.
- (d) Explain ionic product of water. What is the effect of temperature on it?
- (e) Derive the relation $P_cV_c = \frac{3}{8}RT_c$.
- (f) A buffer solution contains 0·4 mole of NH₄OH and 0·5 mole of NH₄Cl per litre. Calculate the pH of the solution. Dissociation constant of NH₄OH at the room temperature is 1·81×10⁻⁵.

UNIT-I

- 3. Answer any *two* questions from the following: $7 \times 2 = 14$
 - (a) (i) Derive van der Waals' equation for n moles of a real gas.
 - (ii) Show that the excluded volume b is four times the actual volume of the molecule.

3

4

(b)		From the kinetic gas equation, derive the expression for root-	
		mean-square velocity.	2
		Derive the relationship between	
		most probable, average and root- mean-square velocity.	2
	(iii)	Calculate the temperature at which	
		the average velocity of oxygen equals that of hydrogen at 20 K.	3
(c)	(i)	What are reduced pressure,	
		temperature and volume? Derive	
		the reduced equation of state. Write its significance. $1\frac{1}{2}+2\frac{1}{2}+1$	=5
	(ii)	The reduced volume and	
		temperature of a gas are 10.2 and	
		0.7. What will be its pressure if its	2
		critical pressure is 4.25 MPa?	2
		Unit—II	
. Ans	swer a	any one question from the following:	5
(a)	(i)	Explain three different intermolecular forces present in liquids. Give examples.	3
			3
	(ii)	What structural part of a liquid makes it flow? Explain briefly how a	2
		liquid flows.	2

20P/503

(Continued)

- (b) (i) Describe drop number method for determining the surface tension of a liquid.
 - In the determination of surface (ii) tension of a liquid using stalagmometre, the liquid gave 58 drops while water gave 24 drops, the volume of the liquid and water being the same. The density of water is 0.998 g mol-1 while that of the liquid is $0.795 \,\mathrm{g}\,\mathrm{mol}^{-1}$. The surface tension of water at the given temperature is 70.8 dynes cm⁻¹. What is the surface tension of the liquid?

UNIT-III

- **5.** Answer any *two* questions form the following: $4\frac{1}{2} \times 2 = 9$
 - (a) What are liquid crystals? Name the different types and how do they differ in their molecular arrangement. Write any one application of liquid crystal.

1+3+1/2=41/2

(b) (i) Derive Bragg's equation for crystal structure determination.

3

3

2

(ii)	Sodium metal crystallizes in b.c.c.	
	lattice with the cell edge 4.29 Å.	
	What is the radius of sodium atom?	11/2

(c) (i) What are Miller indices? Illustrate (111) plane in cubic system.

1+11/2=21/2

2

(ii) Electrical conductivity of semiconductor increases with increase in temperature. Explain from band theory.

UNIT-IV

- **6.** Answer any *two* questions from the following: $7 \times 2 = 14$
 - (a) (i) Define the terms solubility and solubility product of a substance.
 Explain the use of solubility product in qualitative analysis. 2+3=5
 - (ii) 0.00094 gm of AgCl is dissolved in 500 ml of water at 25 °C to form a saturated solution. Calculate the solubility product of AgCl. (Ag = 108, Cl = 35.5).
 - (b) (i) What is buffer solution? Derive Henderson's equation for acidic buffer. Write three applications of buffer solution. 1+2½+1½=5

20P/503

(Continued)

(ii) Calculate the pH value of a solution obtained by mixing 0.083 moles of acetic acid and 0.091 moles of sodium acetate and making the volume 500 ml. K_a for acetic acid is 1.75×10^{-5} .

2

- (c) (i) What is salt hydrolysis? For a salt of weak base and strong acid, prove that $K_{\rm h} = \frac{K_{\rm w}}{K_{\rm b}}$. Deduce an expression for pH of such salt solution. 1+2+2=5
 - (ii) Explain why phenolphthalein is not a suitable indicator in the titration of ammonium hydroxide and HCl.

2

* * *