1 SEM TDC ECOH (CBCS) C2

2019

(December)

ECONOMICS

(Core)

Paper: C-2

(Mathematical Methods for Economics-I)

Full Marks: 80
Pass Marks: 32

Time: 3 hours

The figures in the margin indicate full marks for the questions

- 1. Choose the correct option / Answer the following: 1×8=8
 - (a) $A \cap A' =$
 - (i) Ω
 - (ii) A
 - (iii) ϕ
 - (iv) A'

(b) If the AR function is
$$AR = 100 - 3x$$
, identify the MR function.

(i) MR =
$$100x - 3x^2$$

(ii) MR =
$$100x + c$$

(iii) MR =
$$-6x + 10$$

(iv) MR =
$$-6x + 100$$

(c)
$$\int a^x dx =$$

(i)
$$\log a^x + c$$

(ii)
$$ax + c$$

(iii)
$$\frac{a^x}{\log_e a} + c$$

(iv)
$$a^x + c$$

- (d) Define limit of a function.
- (e) The solution of the differential equation $\frac{dy}{dx} = 6$ is

(i)
$$y = Ae^{6x}$$

(ii)
$$y = Ae^{6x} + c$$

(iii)
$$y = 6x$$

(iv)
$$y = 6x + c$$

(f)
$$\int_a^b f(x) \, dx =$$

(i)
$$\int_{b}^{a} f(x) dx$$

(ii)
$$-\int_{b}^{a} f(x) dx$$

(iii)
$$\int_0^b f(x) dx$$

(iv)
$$\int_{a}^{0} f(x) dx$$

- (g) Distinguish between rational number and irrational number.
- (h) A consumer has a utility function $U = u(Q) = \alpha Q^{\beta}$. His/her marginal utility function is

(i)
$$MU = \alpha Q^{\beta-1}$$

(ii)
$$MU = \beta Q^{\alpha-1}$$

(iii)
$$MU = \alpha\beta Q^{\alpha-1}$$

(iv)
$$MU = \alpha\beta Q^{\beta-1}$$

- **2.** Answer any four of the following: $4\times4=16$
 - (a) Distinguish between relations and functions with examples.

(b) Evaluate

$$\lim_{x\to 1}\frac{x^3-1}{x^2-1}$$

(c) Given the consumption function

$$C(y) = 1000 - \frac{200}{5+u}$$

Find the marginal propensity to consume at y = 10.

(d) Find

$$\int e^x x^2 dx$$

- (e) Briefly explain the uses of differential equations in economics.
- 3. (a) (i) Given the following sets:

$$S_1 = \{a, b, c, d\}$$

$$S_2 = \{1, 2, 3, 4\}$$

Find the Cartesian product P. Also graph the Cartesian product. 3+2=5

(ii) Define set. Illustrate the operations of sets with the help of Venn diagram. 1+4=5

Or

- (b) (i) Define the following with examples: 1×4=4

 Null set; Disjoint set; Convex set; Intersection of sets
 - (ii) Find the power sets of the following sets:

$$A = \emptyset, \quad B = \{1\}$$
 1+1=2

- (iii) Define proper subset. Write the proper subsets of $A = \{1, 2, 3\}$. 2+2=4
- **4.** (a) (i) Define continuity of a function. Check the continuity for f(x) = |x| at x = 0. 2+3=5
 - (ii) Draw the graph of $y = x^{-1.3}$.

Or

- (b) Define function. Explain with diagram different types of functions. 2+9=11
- 5. (a) (i) Given the production function $Q = -\frac{2}{3}L^3 + 10L^2, \text{ where } L \text{ is labour}$ employed. Show that diminishing marginal product of labour operates when employment of labour is 6 or more.

5

If the AR function is AR = 100 - 3Q,

3

Find $\frac{d}{dx}\log(x^2+2x)$.

(ii)

(iii)

		find the elasticity of demand at $Q = 5$.	4
		Or	
(b)	(i)	Given the total cost function	
		$TC = 10000 + 100x - 10x^2 + \frac{x^3}{3}$	
		Find the marginal cost function and its slope. 3+2	=5
	(ii)	If the demand function is $Q = \sqrt{10 - p^2}$, find the elasticity of demand at $p = 2$.	4
	(iii)	Find	
		$\frac{d}{dx}\frac{x^2}{e^x}$	3
6. (a)	(i)_	The marginal cost of a firm is given by $MC = 3 + 7e^x$, where x is output. Find the average cost function, if	
		the fixed cost is ₹650.	5
	(ii)	Evaluate $\int \log x dx$.	3
	(iii)	Briefly illustrate the use of definite integrals in economics.	4
20P/ 495	5	(Continue	ed)

Or

(b) (i) Given the producer's supply function $Q = \sqrt{-4+4p}$ and the market price 710, find the producer's surplus.

$$MC = \frac{\alpha}{\sqrt{\alpha x + \beta}}$$

If the total cost of zero output (x) is zero, find TC as a function of x.

(iii) Evaluate

Given

(ii)

$$\int \frac{(y-2)^2}{\sqrt{y}} dy$$

7. (a) (i) Analyze the following market model for stability:

$$Q_d = 14 - 3p$$

$$Q_s = -10 + 2p$$

$$\frac{dp}{dt} = 4(Q_d - Q_s)$$

(ii) Distinguish between homogeneous linear differential equation and non-homogeneous linear differential equation.

2

3

9

Or

(b) Given the market model

$$Q_d = a - bp + \delta \frac{dp}{dt}$$

$$Q_s = -c + dp$$

$$\frac{dp}{dt} = \lambda (Q_d - Q_s)$$

 $[a, b, c, d, \lambda > 0]$

Obtain the time path of price p_t . What restriction will you put on δ to ensure dynamic stability? 9+2=11

