1 SEM TDC MTMH (CBCS) C 2 2019 (December) ## **MATHEMATICS** (Core) Paper: C-2 (Algebra) Full Marks: 80 Pass Marks: 32 Time: 3 hours The figures in the margin indicate full marks for the questions - **1.** (a) State the complex number -1+i in the polar form. - (b) Show that the n numbers of n th root of unity form a geometric progression indicating the common ratio. - (c) Find the values of $(-16)^{\frac{1}{4}}$. - (d) Writing $\cos \theta + i \sin \theta$ as $\operatorname{cis} \theta$, if $x = \operatorname{cis} \alpha$, $y = \operatorname{cis} \beta$, $z = \operatorname{cis} \gamma$ and xyz = x + y + z, show that $1 + \cos(\beta - \gamma) + \cos(\gamma - \alpha) + \cos(\alpha - \beta) = 0$ 1 - 2. (a) Give an example of the well-ordering property of positive integers. (b) Let $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$ be two functions. Consider the composite of fand q. Following conclusions are drawn: fg is the composite of f and g. Range of f is contained in the II. domain of q. Choose the correct answer from the following: Both the statements I and II are (i) true (ii) I is true and II is false (iii) I is false and II is true (iv) Both the statements I and II are - (c) Consider the functions $f: \mathbb{Z} \to \mathbb{R}$ defined as f(x) = 2x and $g: \mathbb{N} \to \mathbb{R}$ defined as $g(x) = \sqrt{x}$. Find the composites gf and fg, if they exist. Justify your answer in each case. false (d) Show that the relation 'congruence modulo m' (\equiv) over the set of positive integers is an equivalence relation. 3 2 1 - (e) Let $f: X \to Y$ be invertible. Show that f is a bijection. Show that $g: \mathbb{R} \to \mathbb{R}$ defined by g(x) = 2x + 1 is a bijection and find its inverse. 3+2+1=6 - (f) Let b > 0 be an integer and a be any integer. Show that there exist unique integers q and r such that a = bq + r, where $0 \le r < b$. - (g) What is Euclidean algorithm? Let $a, b \in \mathbb{Z}$ and either $a \neq 0$ or $b \neq 0$. Show that there exists greatest common divisor d of a and b such that d = ax + by for some integers x and y and d is uniquely determined by a and b. 1+5=6 Or Show that $an \equiv bn \pmod{m} \Leftrightarrow a \equiv b \pmod{\frac{m}{d}}$, where (m, n) = d. - **3.** (a) Define linear combination of the vectors v_1, \dots, v_p in \mathbb{R}^n . - (b) Give an example of a 3×5 matrix in the row reduced echelon form. - (c) A linear system of equations in five variables has been reduced to the 20P/504 1 associated system $x_1 + 6x_2 + 3x_4 = 0$; $x_3 - 4x_4 = 5$; $x_5 = 7$ with reference to the reduced augmented matrix $$\begin{bmatrix} 1 & 6 & 0 & 3 & 0 & 0 \\ 0 & 0 & 1 & -4 & 0 & 5 \\ 0 & 0 & 0 & 0 & 1 & 7 \end{bmatrix}$$ Indicate the basic variables and the free variables. 2 (d) A vector equation $x_1v_1 + \cdots + x_pv_p = 0$ where each $v_i \in \mathbb{R}^n$; $1 \le i \le p$ and each x_i ; $1 \le i \le p$ is a scalar, has the trivial solution. State the consequences with reference to x_i 's and v_i 's separately. 1+1=2 (e) Define span $\{v_1, \dots, v_p\}$, where $v_1, \dots, v_p \in \mathbb{R}^n$. Justify whether $0 \in \text{span } \{v_1, \dots, v_p\}$ or not. Determine, for what value(s) of h, $w = \begin{bmatrix} 3 \\ 1 \\ h \end{bmatrix}$ is in span $\{v_1, v_2, v_3\}$, where $v_1 = \begin{bmatrix} 1 \\ -1 \\ -2 \end{bmatrix}$, $$v_2 = \begin{bmatrix} 5 \\ -4 \\ -7 \end{bmatrix}, \quad v_3 = \begin{bmatrix} -3 \\ 1 \\ 0 \end{bmatrix}.$$ Or Let A be an $m \times n$ matrix, $x \in \mathbb{R}^n$ and $b \in \mathbb{R}^m$. When does the equation Ax = b have a solution? Further for $u, v \in \mathbb{R}^n$ and a scalar c show that— - (i) A(u+v) = Au + Av; - (ii) A(cu) = cAu. - (f) Describe all the solution of Ax = b, where $$A = \begin{bmatrix} 3 & 5 & -4 \\ -3 & -2 & 4 \\ 6 & 1 & -8 \end{bmatrix}, b = \begin{bmatrix} 7 \\ -1 \\ 4 \end{bmatrix}$$ by- - (i) row reducing the augmented matrix $[A \ b]$ to echelon form; - (ii) transforming the above to row reduced echelon form; - (iii) giving the solution in the form x = p + tv, $t \in \mathbb{R}$. 2+2+1=5 - (g) Prove that an indexed set of two or more vectors $S = \{v_1, \dots, v_p\}$ is linearly dependent if and only if at least one of the vectors in S is a linear combination of the others. ## Or Determine a linear dependence relation among the vectors $v_1 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$, $v_2 = \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix}$, $v_3 = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}$ - **4.** (a) Let $T: \mathbb{R}^5 \to \mathbb{R}^2$ and T(x) = Ax for some matrix A and for each $x \in \mathbb{R}^5$. How many rows and columns are there in A? - (b) Define the column space of a matrix A. 1 - (c) Show that the null space of an $m \times n$ matrix A is a subspace of \mathbb{R}^n . - (d) Show that $u = \begin{bmatrix} 6 \\ -5 \end{bmatrix}$ is an eigenvector of $A = \begin{bmatrix} 1 & 6 \\ 5 & 2 \end{bmatrix}$ and state the corresponding eigenvalue. - (e) Determine the eigenvalues of $A = \begin{bmatrix} 2 & 3 \\ 3 & -6 \end{bmatrix}$. 1 (f) Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be linear. Then show that T is one-to-one if and only if the equation T(x) = 0 has the trivial solution. 4 (g) Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be linear. Show that there exists a unique matrix A such that $T(x) = Ax \ \forall \ x \in \mathbb{R}^n$. 4 Or Let $T: \mathbb{R}^2 \to \mathbb{R}^4$ be linear and given $$T(e_1) = \begin{bmatrix} 3\\1\\3\\1 \end{bmatrix}, \quad T(e_2) = \begin{bmatrix} -5\\2\\0\\0 \end{bmatrix}, \quad \text{where} \quad e_1 = \begin{bmatrix} 1\\0 \end{bmatrix}$$ and $e_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$. Find a formula for the image of an arbitrary x in \mathbb{R}^2 . (h) Row reduce the augmented matrix $[A \ I]$, where $A = \begin{bmatrix} 1 & 0 & -2 \\ -3 & 1 & 4 \\ 2 & -3 & 4 \end{bmatrix}$ and I, the identify matrix so that $[A \ I]$ is row equivalent to $[I \ A^{-1}]$. Verify that $AA^{-1} = I$. 3+2=5 (i) Determine the rank of $$A = \begin{bmatrix} 2 & 5 & -3 & -4 & 8 \\ 4 & 7 & -4 & -3 & 9 \\ 6 & 9 & -5 & 2 & 4 \\ 0 & -9 & 6 & 5 & -6 \end{bmatrix}$$ by row reducing it to echelon form.