Total No. of Printed Pages-6

1 SEM TDC PHYH (CBCS) C 1

2021

(March)

PHYSICS

(Core)

Paper : C-1

(Mathematical Physics—I)

Full Marks : 53Pass Marks : 21

Time : 3 hours

The figures in the margin indicate full marks for the questions

- **1.** Choose the correct answer : $1 \times 3=3$
 - (a) The direction of $\stackrel{\rightarrow}{}$ is always
 - *(i)* to the surface = constant
 - (*ii*) || to the surface = constant
 - *(iii)* or || depending upon the shape of surface
 - *(iv)* None of the above

(2)

	(b)	The order and degree of the differential				
		equation $\frac{d^2y}{dx^2} = \frac{dy}{dx}^2 = 3y = 0$ are				
		(i) order 2 and degree 2				
	(ii) order 2 and degree 1					
	(<i>iii</i>) order 1 and degree 2 (<i>iv</i>) order 3 and degree 2 (<i>c</i>) $\xrightarrow{\rightarrow} \overrightarrow{A}$ behaves like					
		(i) a scalar quantity				
		(ii) a vector quantity				
	(iii) scalar or vector					
		(iv) None of the above				
2.	Prove that the function $f(x)$ given by $f(x) \mid x \mid x \mid R$					
	is n	ot differentiable at $x = 1$.	2			

(3)

- **3.** What are linear and non-linear ordinary differential equations? Give examples.
- 4. (a) Solve the following ordinary differential equations (any one) : 3 (i) $(x^2 \ y^2)dy \ xydx$ (ii) $\frac{dy}{dx} \ \frac{x(y^2 \ 1)}{(x \ 1)}$
 - (b) Solve the following 1st order linear differential equations by using integration factor (any *two*) : 3×2=6

(i)
$$\frac{dy}{dx} xy x$$

(ii) $\frac{dy}{dx} \frac{y}{x} 2x$
(iii) $x\frac{dy}{dx} \frac{y}{x} 3x$

5. Find the partial differentiation

$$\frac{f}{x}, \frac{f}{y}, \frac{2f}{x^2}$$
 and $\frac{2f}{y^2}$

for the following functions (any one) :

(*i*)
$$f(x, y) x^4 2x^2y^2$$

(*ii*) $f(x, y) 2x^3 x^2y^6$

16-21**/336**

(Turn Over)

2

2

(4)

- **6.** Solve the following partial differential equations by the method of separation of variable (any *two*) : $2\frac{1}{2}+2\frac{1}{2}=5$
 - (*i*) $3 \frac{u}{x} + 2 \frac{u}{y} = 0, \quad u = u(x, y)$

(ii)
$$\frac{u}{x} \quad 2\frac{u}{t} \quad u, \qquad u \quad u(x, y)$$

- $(iii) \quad \frac{u}{x} \quad 4\frac{u}{y}, \qquad u \quad u(x, y)$
- 7. (a) What are scalar and vector fields? Give examples.2

16-21/336

(5)

- **8.** (a) What is the geometrical interpretation of gradient of a scalar function?
 - (b) Using Stokes' theorem, prove that $_{\circ}\vec{r} d\vec{r} 0$

where

$$\vec{r}$$
 $\hat{i}x$ $\hat{j}y$ $\hat{k}z$ 5

Or

Starting with Maxwell's equation, \overrightarrow{E} —, apply Gauss' theorem to $\overrightarrow{0}$ show that

$$\vec{E} \ d\vec{S} \ \vec{q}$$

 $S \ 0$

(Symbols have their usual meanings.)

(c) Evaluate

$\overrightarrow{F}.\hat{n}dS$

where

$$\vec{F}$$
 (2x 3z) \hat{i} (xz y) \hat{j} (y² 2z) \hat{k}

S being the surface of the sphere having centre (3, 1, 2) and radius 3.

9.	(a)	Define coordinates	orthogonal	curvilinear 2
	(b)	What is element in system? Co sphere of ra for infinite spherical co	the infinitesim spherical polar ompute the vo adius <i>R</i> using the simal volume pordinates.	al volume coordinate lume of a e expression element in 2+2=4
10.	Wha mea	at is Poisso n of Poisson	n's distribution l's distribution.	? Calculate 1+3=4
11.	Con	npute the fol $(2x)$	lowing integral : 1 (1 $x x^2$) c	2 Ax

* * *

5

2