(2)

1 SEM TDC MTMH (CBCS) C1

2021

(March)

MATHEMATICS

(Core)

Paper: C-1

(Calculus)

Full Marks: 60
Pass Marks: 24

Time: 3 hours

The figures in the margin indicate full marks for the questions

- **1.** (a) Write the value of $\frac{d}{dt}(\tanh t)$.
 - (b) Write the value of $\frac{d^n}{dx^n}(\sin ax)$.
 - (c) Write intervals in which $y x^3$ is concave up and concave down. 2

(d) Determine the concavity of $y = 2 \sin x$ on [0,2].

(e) Show that $\cosh 2x \cosh^2 x \sinh^2 x$ 3

Or

Show that $\cosh^{-1} \frac{1}{x} \operatorname{sech}^{-1} x$

(f) Find y_n (any one) if—
(i) $y \cos^3 x$;

(ii)
$$y = \frac{a - x}{a - x}$$
.

(g) If $y an \frac{1}{a}$, then find y_n .

Or

If $\log y = \tan^{-1} x$, show that $(1 \quad x^2)y_2 = (2x \quad 1)y_1 = 0$

(h) Evaluate:

$$\lim_{x \to 0} \frac{x + \sin x \cos x}{x^3}$$

$$Or$$

Find the asymptote of the curve

$$y^3$$
 x^2y $2y^2$ $4y$ 1 0

2. (a) Evaluate:

2

4

4

5

 $_{0}^{\overline{2}}\cos^{3}x\,dx$

(b) Evaluate (any one):

(i) $\frac{1}{2}\sin^4 x \cos^5 x dx$

- (ii) $\sec^6 x dx$
- (c) Obtain the reduction formula for

 $\tan^n x dx$

Or

A region is enclosed by the triangles with vertices (0, 1), (1, 0), (1, 1). Find the volume of the solid generated by revolving the region about the *y*-axis.

(d) The circle x^2 y^2 a^2 revolves round the *x*-axis. Find the volume so generated.

Or

A region bounded by the curve $y = \sqrt{x}$, the *x*-axis, and the line x = 4 is revolved about the *x*-axis to generate a solid. Find the volume of the solid.

3. (a) Write the parametric formula for $\frac{dy}{dx}$.

(b) Write the equation of the circle in polar form.

(c) Write the equivalent Cartesian equation of $r^2 \sin 2$ 2.

(d) The position of a particle moving in the xy-plane is given by $x = \sqrt{t}$, y = t. Find the path traced out by the particle.

(e) Find a parametrization for the curve having the line segment with end points (-1, -3) and (4, 1).

Or

Parametric equations and parameter interval for the motion of a particle in xy-plane is given $x \cos 2t$, $y \sin 2t$, $0 \ t$. Identify the particle's path by finding a Cartesian equation.

(f) Find the length of the astroid

 $x \cos^3 t$, $y \sin^3 t$, 0 t 2

Or

Find the area of the surfaces generated by revolving the curve $x \cos t$, $y + 2 \sin t$, 0 + t + 2 about x-axis.

1

1

2

2

5

- **4.** (a) Write the necessary condition for the vectors \vec{a} , \vec{b} , \vec{c} to be co-planar.
 - (b) The position vector of a moving particle is given by

 \vec{r} $\cos 2t\hat{i}$ $2\sin 4t\hat{j}$ $t^2\hat{k}$

Find the acceleration at any time t. 2

- (c) Find the volume of the parallelopiped whose edges are represented by
- \vec{a} $2\hat{i}$ $3\hat{j}$ $4\hat{k}$, \vec{b} \hat{i} $2\hat{j}$ \hat{k} , \vec{c} $3\hat{i}$ \hat{j} $2\hat{k}$

Or

Let

$$\vec{R}(u) \quad 4\hat{i} \quad (u^2 \quad 6u^3) \,\hat{j} \quad u^2 \hat{k}$$

Find $\int_{1}^{3} \overrightarrow{R}(u) du$.

- (d) Evaluate \vec{a} (\vec{b} \vec{c}), where
- \vec{a} \hat{i} $2\hat{j}$ $3\hat{k}$, \vec{b} $2\hat{i}$ \hat{j} \hat{k} , \vec{c} \hat{i} $3\hat{j}$ $2\hat{k}$

Or

Find the tangential component of acceleration of a moving particle.

* * *