3 SEM TDC MTMH (CBCS) C 6

2020

(Held in April-May, 2021)

MATHEMATICS

(Core)

Paper : C-6

(Group Theory—I)

Full Marks : 80Pass Marks : 32

Time : 3 hours

The figures in the margin indicate full marks for the questions

- **1.** (a) Write the order of the group P_n .
 - (b) Write the identity element of the group Z of all integers under the operation defined by a b a b 1, a, b Z.

(2)

(c)	If G is a group, then prove that	
	$O(x) O(x^{-1}), x G$	2
(d)	Define dihedral group.	2
(e)	Let G be a group and a, b G. Then prove that the equation ax b has a unique solution in G.	4
	Or	
	If G is a group, then prove that—	
	(i) identity element of G is unique;	
	(ii) inverse of every element of G is unique;	
	(iii) $(x^{-1})^{-1} x, x G.$	
(f)	Show that the four permutations	
	I, (ab), (cd), (ab) (cd)	
	on four symbols a , b , c and d form a finite Abelian group under the operation multiplication of permuta- tions.	5

16-21**/467**

16-21**/467**

(3)

6		or)	16 0	1/14	57
	containing more than one element.	4		(g)	State and j
	where the summation runs over one element a in each conjugate class				cyclic.
	$O(G) O(Z) \qquad \frac{O(G)}{O[N(a)]}$				Prove that o
	equation of G can be written as			(f)	Prove that group is cy
	Let G be a finite group and Z be the centre of G then prove that the class				entiter lucif
	Prove that the centre Z of a group G is a normal subgroup of G .	4		(e)	Prove that
	HH^{1} H .				f
	Show that a non-empty subset H of a group G is a subgroup of G iff			(d)	Find the or
	Or				J (1
	<i>G</i> , then prove that <i>HK</i> is a subgroup of <i>G</i> iff <i>HK KH</i> .	4			tation is ev
	If <i>H</i> and <i>K</i> are two subgroups of a group			(c)	Examine w
	Give an example to show that the union of two subgroups of a group G is not necessarily a subgroup of G .	2		(b)	What do yo a group Ga
	Write the class equation of the group <i>G</i> .	1	3.	(a)	Write the cyclic group

(4)

3.	(a)	Write the number of generators in a cyclic group of order 15.	1
	(b)	What do you mean by index of a set <i>S</i> in a group <i>G</i> ?	1
	(c)	Examine whether the following permutation is even or odd : f (1 3 2 5 6 7)	2
	(d)	Find the order of $f \qquad \begin{array}{ccc} 1 & 2 & 3 \\ f & 2 & 1 & 3 \end{array}$	2
	(e)	Prove that any two right cosets are either identical or disjoint.	4
	(f)	Prove that every subgroup of a cyclic group is cyclic.	5
		Prove that every group of prime order is cyclic.	
	(g)	State and prove Lagrange's theorem.	5
16-2	1 /46	57 (Continued	d)

Give an example to show (b) of two subgroups of a necessarily a subgroup If H and K are two subgr (c) *G*, then prove that *HK* : G iff HK KH. Or

- (d) Prove that the centre Znormal subgroup of G.
- (e) Let G be a finite group centre of G, then prove equation of G can be w

$$O(G) \quad O(Z) \qquad \qquad \frac{O(G)}{O[N(a)]}$$

16-21**/467**

2. (a)

(Turn Over)

4. (a) State True or False :

Any group of prime order is simple.

- (b) Define external direct product of groups. 2
- (c) Show that every subgroup of an Abelian group is normal.3
- (d) Prove that every quotient group of a cyclic group is cyclic.4
- (e) If G_1 and G_2 are groups, then prove that $G_1 \ \{e_2\}$ and $\{e_1\} \ G_2$ of $G_1 \ G_2$ are normal subgroup of $G_1 \ G_2$ isomorphic to G_1 and G_2 respectively. 5

Or

Let G be a finite Abelian group such that its order O(G) is divisible by a prime p, then prove that G has at least one element of order p.

(6)

5. (*a*) Let *f* be a homomorphism from a group G into a group G. Then prove that— (i) f(e) = e, where e, e are identities of G and G respectively; (*ii*) $f(a^n) [f(a)]^n$, *a G*. 2 (b) Let (Z,) and (E,) be the group of integers and the group of even integers respectively. Then show that the mapping f: Z E defined by $f(x) = 2x, \quad x = Z$ is an isomorphism. 3 Prove that every finite group G is (c)isomorphic to a permutation group. 5 (d) If f: G G is an onto homomorphism with kernel *K*, then prove that $G \cong G / K$ 5

1

(7)

Or

Let H be a normal subgroup of a group G and K be a subgroup of G. Then prove that

$$\frac{HK}{H} \cong \frac{K}{H K}$$

 $\star \star \star$