Total No. of Printed Pages-4

3 SEM TDC MTMH (CBCS) C 7

2020

(Held in April-May, 2021)

MATHEMATICS

(Core)

Paper : C-7

(PDE and Systems of ODE)

Full Marks : 60Pass Marks : 24

Time : $2\frac{1}{2}$ hours

The figures in the margin indicate full marks for the questions

1. (a) Write the order of the equation

$$\left(\frac{\partial u}{\partial x}\right)^2 + \left(\frac{\partial u}{\partial y}\right)^3 = 0 \qquad 1$$

- (b) Write the general solution of the equation of the form f(p, q) = 0.
- (c) Choose the correct option : $p \frac{\partial(u, v)}{\partial(y, z)} + q \frac{\partial(u, v)}{\partial(z, x)} = \frac{\partial(u, v)}{\partial(x, y)}$ is a
 - (i) linear equation
 - (ii) non-linear equation

16-21**/468**

(Turn Over)

1

1

(2)

		(iii) first-order non-linear equation	
		(iv) second-order equation	
	(d)	Write the form of the general solution of the linear partial differential equation	
		Pp + Qq = R	2
	(e)	Find the characteristics of the equation $pq = z$.	3
	(f)	Solve (any one) :	4
		(i) $zp = -x$	
		(<i>ii</i>) $p + q = 1$	
2.	(a)	Write Charpit's auxiliary equations for the equation $(p^2 + q^2)y = qz$.	3
	(b)	Solve :	5
		(1+y)p+(1+x)q = z	
		Or	
		Find the complete integral of $px + qy = pq$.	
	(c)	Solve any <i>one</i> by using Jacobi's method : (<i>i</i>) $p^2x + q^2y = z$ (<i>ii</i>) $z^2 = pqxy$	5
3.	(a)	Write the condition when the equation Rr + Ss + Tt + f(x, y, z, p, q) = 0	
		is parabolic.	1

16-21**/468**

(Continued)

(b) Reduce the equation

$$\frac{\partial^2 z}{\partial x^2} + 2\frac{\partial^2 z}{\partial x \partial y} + \frac{\partial^2 z}{\partial y^2} = 0$$

to canonical form.

Or

Solve p + r + s = 1.

(c) Derive the one-dimensional wave equation. 6

Solve
$$\frac{\partial^2 z}{\partial x^2} - 2\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = 0$$
 by the method

of separation of variables.

- **4.** (a) Write one-dimensional wave equation. 1
 - (b) Choose the correct option : The equation $\frac{\partial^2 z}{\partial x^2} = \frac{\partial z}{\partial t}$ is
 - *(i)* elliptic
 - (ii) parabolic
 - (iii) hyperbolic
 - *(iv)* None of the above
 - (c) Solve one-dimensional heat equation by the method of separation of variables.

Or

Describe the physical problem of vibrating string and assumptions on it.

16-21**/468**

5

1

6

(4)

5. (a) Write the equation

$$2\frac{dx}{dt} + 6\frac{dy}{dt} + 7y = t$$

in normal form.

1

3

(b) Transform the linear differential equation

$$\frac{d^2x}{dt^2} - 3\frac{dx}{dt} + 2x = t^2$$

into a system of first-order differential equations.

(c) Let
$$L_1 \equiv 2D+1$$
, $L_2 \equiv D^2+1$, $f(t) = t^3$,
where $D \equiv \frac{d}{dt}$. Show that $L_1L_2f = L_2L_1f$. 4
Or

Find the characteristic roots of the equation associated in the solution of

$$\frac{dx}{dt} = 6x - 3y, \ \frac{dy}{dt} = 2x + y$$

(d) Solve :

7

$$\frac{dx}{dt} + \frac{dy}{dt} - x = -2t$$
$$\frac{dx}{dt} + \frac{dy}{dt} - 3x - y = t^{2}$$
$$Or$$

Find the general solution of the linear system of equations

$$\frac{dx}{dt} = 5x - 2y, \ \frac{dy}{dt} = 4x - y$$

16-21—1600**/468**

3 SEM TDC MTMH (CBCS) C 7