Total No. of Printed Pages—5

3 SEM TDC PHYH (CBCS) C 5

2020

(Held in April-May, 2021)

PHYSICS

(Core)

Paper : C-5

(Mathematical Physics—II)

Full Marks : 53Pass Marks : 21

Time : 3 hours

The figures in the margin indicate full marks for the questions

- **1.** Choose the correct answer : $1 \times 5 = 5$
 - (a) A function f(x) can be expressed in terms of Fourier series, if it is
 - *(i)* single valued and periodic
 - (ii) single valued and non-periodic
 - *(iii)* single valued, periodic and bounded
 - (iv) periodic and bounded

(2)

<i>(b)</i>	$\sin nx \sin mx dx$, if
	(i) n m
	(<i>ü</i>) n m 0
	<i>(iii) n m</i> 0
	(iv) n m
(C)	If $P_n(x)$ be the Legendre polynomial, then $P_n(1)$ is equal to
	<i>(i)</i> 0
	<i>(ü)</i> 1
	(iii) $\frac{1}{2}n(n-1)$
	$(iv) \frac{2n}{(n-1)}$
(d)	The particular integral in the differential equation $(D^2 {}^2)y e {}^x$ is
	(i) e ^x
	$(\ddot{u}) = \frac{e^{-x}}{2}$
	$\begin{array}{ll} (iii) \frac{e^{-x}}{2} \\ (iv) \frac{e^{-x}}{2} \end{array}$
	(<i>iv</i>) $\frac{e^{-x}}{2^{-2}}$

(3)

(e) Relative error is

$$(i) \quad \frac{\overline{x}}{x}$$
$$(ii) \quad \frac{\overline{x}}{x}$$
$$(iii) \quad \overline{x} \quad x$$
$$(iv) \quad 0$$

2. (a) Find the series of sines and cosines of multiples of x which represents f(x) in the interval x, where

$$f(x) \quad 0 \text{ when } x \quad 0$$
$$\frac{x}{4} \text{ when } 0 \quad x$$

and hence deduce that

$$\frac{2}{8}$$
 1 $\frac{1}{3^2}$ $\frac{1}{5^2}$... 5

(b) Find the value of

$$\frac{1}{n}$$

using Fourier series.

Or

Expand the Fourier series of the periodic function f(x) with period 2l which in the interval (l, l) is given by f(x) |x|.

(Turn Over)

4

3. (*a*) Prove that

$$P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} (x^2 - 1)^n$$

and then find the value of $P_2(x)$. 5

(b) Prove that

$$\int_{1}^{1} P_m(x) P_n(x) dx = 0$$
 5

(c) Prove the following relations : $2\frac{1}{2} \times 2=5$ (i) (n 1) $P_{n-1}(x)$ (2n 1) $xP_n(x)$ n $P_{n-1}(x)$

(ii)
$$n P_n(x) \times P(x) P_{n-1}(x)$$

Where the symbols signify usual meaning.

(d) Solve the Bessel's differential equation

$$x^2 \frac{d^2 y}{dx^2} \quad x \frac{dy}{dx} \quad (x^2 \quad n^2)y \quad 0 \qquad 5$$

4. Prove that

$$(m, n) = \frac{(m) (n)}{(m n)}$$
 3

16-21**/469**

(Continued)

(5)

- 5. Discuss the terms (a) systematic error,(b) random error and (c) least count error. 3
- **6.** (a) Solve the following partial differential equations : 4×2=8

(i)
$$\frac{u}{x} = 2 \frac{u}{t}$$
 u, under the condition
 $u(x, 0) = 6e^{-3x}$
(ii) $\frac{u}{x} = 4 \frac{u}{t}$, under the condition
 $u(0, y) = 8e^{-3y}$

(b) Find the solution of Laplace's equation either in 3D Cartesian form or in 3D cylindrical form.

5

 $\star\star\star$