3 SEM TDC PHYH (CBCS) C 6

2020

(Held in April-May, 2021)

PHYSICS

(Core)

Paper : C-6

(Thermal Physics)

Full Marks : 53 Pass Marks : 21

Time: 3 hours

The figures in the margin indicate full marks for the questions

- **1.** Choose and write the correct answer : $1 \times 7 = 7$
 - (a) When a gas in a vessel expands, its internal energy decreases. The process involved is
 - (i) isothermal
 - (ii) isobaric
 - (iii) adiabatic
 - (iv) isochoric

16-21**/470**

(Continued)

(2)

- *(b)* The efficiency of a Carnot engine working between 800 K and 500 K is
 - *(i)* 0·4
 - *(ii)* 0.63
 - *(iii)* 0·38
 - *(iv)* 0·5
- (c) In case of a reversible cycle process change in entropy
 - (i) is dS = 0
 - (ii) is dS > 0
 - *(iii)* is *dS* < 0
 - (iv) may be either dS > 0 or dS < 0depending on initial condition
- (d) Which of the following phenomena gives evidence of the molecular structure of matter?
 - (i) Brownian motion
 - (ii) Diffusion
 - (iii) Evaporation
 - (iv) All of the above
 - (*m*) Evap

(e) For a gas obeying the Maxwell-Boltzmann distribution law of molecular speeds, the average speed is given by

(i)
$$\sqrt{\frac{2kT}{m}}$$

(ii) $\sqrt{\frac{8kT}{\pi m}}$
(iii) $\sqrt{\frac{3kT}{m}}$
(iv) $\sqrt{\frac{m}{3kT}}$

- (f) Internal energy of a real gas depends upon
 - (i) both temperature and volume
 - *(ii)* temperature only
 - (iii) volume only
 - *(iv)* pressure
- (g) The constant a in van der Waals' equation arises due to the
 - *(i)* attractive forces between the gas molecules
 - *(ii)* repulsive forces between the gas molecules
 - (iii) finite volume of the gas
 - (iv) None of the above

(Turn Over)

2.	(a)	State and explain the first law of thermodynamics. 1+2=3
	(b)	Explain why the temperature of a gas drops in adiabatic expansion. 2
	(c)	Define extensive and intensive thermodynamic variables. 2
3.	(a)	Calculate the change in entropy when 5 kg of water at 100 °C is converted into steam at the same temperature. Given latent heat of steam = 540 cal/g. 3
	(b)	State Clausius theorem. 2
4.	(a)	Describe Carnot's reversible heat engine and calculate its efficiency. 2+3=5
	(b)	Write short notes on any <i>two</i> of the following : $3 \times 2=6$
		(i) Second law of thermodynamics
		(<i>ii</i>) Brownian motion
	(-)	(<i>u</i>) Internal energy
	(C)	dynamical equation : 2+2=4
		(i) $\left(\frac{\partial S}{\partial V}\right)_T = \left(\frac{\partial P}{\partial T}\right)_V$

 $(\ddot{u}) \quad \left(\frac{\partial S}{\partial P}\right)_T = \left(\frac{\partial V}{\partial T}\right)_P$

16-21**/470**

(Continued)

(5)

- (d) What is the law of equipartition of energy? Based on this law, show that for a diatomic molecule, the specific heat $C_v = \frac{5}{2}R$ per mole. 2+2=4
- **5.** Show that Clausius-Claperyron equation represents equilibrium between phases. 3
- **6.** What is mean free path of the molecules of a gas? Why is C_p greater than C_v ? 1+2=3
- **7.** (a) Discuss about Andrew's experiment on CO_2 gas. 4
 - (b) What is porous plug experiment? Discuss about Joule-Thompson effect for real and van der Waals' gases. 1+2+2=5
