(2)

3 SEM TDC PHYH (CBCS) C 7

2020

(Held in April-May, 2021)

PHYSICS

(Core)

Paper: C-7

(Digital Systems and Applications)

Full Marks: 53
Pass Marks: 21

Time: 3 hours

The figures in the margin indicate full marks for the questions

- **1.** Choose the correct answer from the following: $1 \times 5 = 5$
 - (a) The signal to be observed on the screen of an oscilloscope is applied
 - (i) across its X-plates
 - (ii) across its Y-plates
 - (iii) to the horizontal amplifier
 - (iv) to the trigger circuit

(b) After counting 0, 1, 10, 11, the next binary number is

- (i) 12
- (ii) 100
- (iii) 101
- (iv) 110

(c) An X-OR gate produces an output only when its two inputs are

- (i) high
- (ii) low
- (iii) different
- (iv) same

(d) The expression \overline{ABC} can be simplified to

- (i) $\overline{A} \cdot \overline{B} \cdot \overline{C}$
- (ii) AB + BC + CA
- (iii) $AB + \overline{C}$
- (iv) $\overline{A} + \overline{B} + \overline{C}$

(e) If an inverter is placed at the input to an S-R flip-flop, the result is

- (i) D flip-flop
- (ii) J-K flip-flop
- (iii) T flip-flop
- (iv) BCD decade counter

2.	an	ine deflection sensitivity of a CRT. Obtain expression for the deflection sensitivity the electrostatic type. 1+3	3=4			Draw th subtract draw the
3.		at is monolithic IC? Explain the steps olved in fabricating a diode in an IC.	3		(b)	Draw th
4.	(a)	Convert the binary number 100111010·101010 into octal number.	2	8.		at is flip- flip-flop
	(b)	Describe how NOR gate can be constructed using diodes and transistors. Explain their action with their truth table.	3	9.	(a)	Draw a diagram
5.	(a)	State and prove De Morgan's two theorems.	3			With a operation IC-555.
	(b)	using Boolean algebra.	3		(b)	Draw the
		Or Simplify the expression		10.	Wri	te a short
		$Y = ABCD + ABC\overline{D} + A\overline{B}CD + A\overline{B}C\overline{D}$		11.	(a)	Write a Memory
		using Karnaugh map and draw the logic circuit for the reduced expression.			(b)	Explain micropro
6.		w the logic diagram of multiplexer and lain it.	3	12.		at is stac nter? Disc
7.	(a)	State the rules for binary subtraction. Explain 1's complement and 2's complement method with examples.	3			w and ex ruction M

Or ne logic circuit diagram of a full tor. Find out its outputs and e truth table. ne logic diagram of a half-adder te its truth table. 2 flop? Draw the logic diagram of and explain it. 1+3=4and explain the functional of IC-555. 3 Or circuit diagram, explain the n of astable multivibrator using e logic diagram of 4-bit serial-in, at shift register. 2 note on asynchronous counter. short note on Random Access (RAM). 2 the function of ALU in 3 ocessor. k? What is the function of stack cuss PUSH and POP operation. 4 Or plain the timing diagram for the MVIr data.
