Total No. of Printed Pages-5

3 SEM TDC STSH (CBCS) C 5

2020

(Held in April-May, 2021)

STATISTICS

(Core)

Paper : C-5

(Sampling Distribution)

Full Marks : 50 Pass Marks : 20

Time : 2 hours

The figures in the margin indicate full marks for the questions

- Find out the correct answer from the following : 1×5=5
 - (a) A sequence of random variables X_1, X_2, \dots, X_n is said to converge in probability to a constant *a*, if for any 0
 - (i) $\lim_{n} P(|X_n \quad a|)$ 1 (ii) $\lim_{n} P(|X_n \quad a|)$ 1

(2)

- (iii) $\lim_{n} P(|X_n \ a|) \quad 0$
- (iv) None of the above
- (b) Order statistics are necessarily
 - (i) independent
 - (ii) mutually independent
 - (iii) dependent
 - *(iv)* None of the above
- (c) The test statistic used for testing the equality of population variance is
 - *(i)* ²-test
 - *(ii) t*-test
 - (iii) F-test
 - (iv) All of above above
- (d) The mean of a chi-square distribution with 12 d.f. is
 - *(i)* 12
 - *(ii)* 11
 - *(iii)* √12
 - *(iv)* 24

16-21**/481**

The variance of Student's *t*-distribution (e) is (i) n (ii) 2n (iii) $\frac{v}{v-2}$ *(iv)* None of the above where v is degrees of freedom **2.** Answer the following in brief : $2 \times 5 = 10$ State Chebyshev's inequality. (a) Distinguish between a parameter and (b)a statistic. Prove that the sum of two independent (c)chi-square variates is also a chi-square variate. (d) Write briefly two applications of *t*-distribution in statistics. (e) Define type–I error and type–II error.

(4)

3. (a) Let X_1, X_2, \dots, X_n be a random sample of size *n* from a population having continuous distribution function F(x). Define the *r*-th order statistic $X_{(r)}$ and obtain its cumulative distribution function and hence the probability density function of a single-order statistic. 1+4+3=8

Or

- (b) (i) State the weak law of large numbers. 2
 - (ii) Examine whether the weak law of large numbers holds for the sequence $\{X_k\}$ of independent random variables defined as

$$P(X_{k} \ 2^{k}) \ 2^{(2k \ 1)};$$

$$P(X_{k} \ 0) \ 1 \ 2^{2k} \ 6$$

4. (a) Define 2 -statistic and derive its sampling distribution by the method of moment-generating function. Also obtain the moment-generating function of 2 -distribution. $_{6+3=9}$

16-21**/481**

16-21**/481**

(Continued)

Or

- (b) If X_1 and X_2 are independent ²-variates with n_1 and n_2 d.f. respectively, then show that $U = \frac{X_1}{X_1 X_2}$ and $V = X_1 X_2$ are independently distributed, and U as a $_1(\frac{n_1}{2}, \frac{n_2}{2})$ variate and V as a ²-variate with $(n_1 n_2)$ d.f. 5+4=9
- **5.** Derive Snedecor's *F*-distribution. If $F(n_1, n_2)$ represents an *F*-variate with n_1 and n_2 d.f., prove that $F(n_2, n_1)$ is distributed as $\frac{1}{F(n_1, n_2)}$. 2+7=9
- **6.** (*a*) What is meant by standard error of a statistic? Write down the standard error of sample mean and sample variance for large random sample.

Obtain the sampling distribution of mean of a random sample drawn from a normal population with mean and variance 2 . (1+2)+6=9

Or

- (b) Describe the following two tests : 4+5=9
 - *(i)* Large sample test for single proportion
 - *(ii)* Large sample test for difference of two means

* * *

16-21—400**/481** 3 SEM TDC STSH (CBCS) C 5