Total No. of Printed Pages—5

5 SEM TDC MTMH (CBCS) C 12

2021

(Held in January/February, 2022)

MATHEMATICS

(Core)

Paper: C-12

(Group Theory—II)

Full Marks: 80
Pass Marks: 32

Time: 3 hours

The figures in the margin indicate full marks for the questions

for the questions

1. (a) Let $H = \{(1), (12)\}$. Is H abelian?

1. (b) Define commutator subgroup and characteristic subgroup.

2+2=4

(c) Prove that if G is a cyclic group, then AutG is abelian.

3

(d) Let G be a cyclic group of infinite order. Then prove that O(AutG) = 2.

3

(e) Prove that a group G is abelian if and

automorphism.

if I_G is the only inner

3

- (f) Let G be a group, then prove that $f: G \to G$ defined by $f(x) = x^{-1}$, $\forall x \in G$ is automorphism if and only if G is abelian.
- **2.** Answer any two of the following: $6\times2=12$
 - (a) Let I(G) be the set of all inner automorphisms on a group G, then prove that—
 - (i) I(G) is normal subgroup of AutG;
 - (ii) $I(G) \cong \frac{G}{Z(G)}$.
 - (b) Let G be a cyclic group generated by a and O(G) = n > 1, then prove that a homomorphism $f: G \to G$ is an automorphism if and only if $G = \langle f(a) \rangle$.
 - (c) Let G be a group and G' be the commutator subgroup of G, then prove that—
 - (i) G' is normal subgroup of G;
 - (ii) $\frac{G}{G'}$ is abelian;
 - (iii) if N is any normal subgroup of G, then G/N is abelian if and only if $G' \subseteq N$.
 - (d) Let G be group and Z(G) be the centre of G, then prove that if $\frac{G}{Z(G)}$ is cyclic, then G is abelian.

- 3. (a) Define internal direct product.
 - (b) Let G_1, G_2, \dots, G_n be a finite collection of groups such that
 - $G_1 \oplus G_2 \oplus \cdots \oplus G_n = \{(g_1, g_2, \cdots, g_n) : g_i \in G_i\}$ then prove that

$$|(g_1, g_2, \dots, g_n)| = \text{lcm}(|g_1|, |g_2|, \dots, |g_n|)$$
 3.

- (c) If s and t are relatively prime, then prove that $U(st) \cong U(s) \oplus U(t)$.
- (d) Suppose that a group is an internal direct product of its subgroups H and K. Then prove that—
 - (i) H and K have only the identity element in common;
 - (ii) G is isomorphic to the external direct product of H by K.

Or

Prove that a group G is internal direct product of its subgroups H and K if and only if—

- (i) H and K are normal subgroups of G;
- (ii) $H \cap K = \{e\}$.
- (e) If m divides the order of a finite abelian group G, then prove that G has a subgroup of order m.

22P/14

(Turn Over)

6

2

5

Or

Let G be a finite abelian group of order $p^n m$, where p is prime and $p \mid m$, then prove that $G = H \times K$ where $H = \{x \in G : x^{p^n} = e\}$ and $K = \{x \in G : x^m = e\}$.

- 4. (a) Write the class equation for the group G.
 - (b) Define sylow p-subgroup and conjugacy class. 2+2=4
 - (c) If $|G| = p^2$, where p is prime, then prove that G is abelian.
 - (d) Let G be a finite group and Z(G) be the centre of G. Then prove that

$$O(G) = O(Z(G)) + \sum_{\alpha \notin Z(G)} \frac{O(G)}{O(N(\alpha))}$$

- (e) Answer any two of the following: 4×2=8
 - (i) Let G be a group. Then prove that O(C(a)) = 1 if and only if $a \in Z(G)$.
 - (ii) Prove that every abelian group of order 6 is cyclic.
 - (iii) Prove that a group of order 12 has a normal sylow p-subgroup or sylow 3-subgroup.

(f) Prove that no group of order 30 is simple.

Or

Prove that a sylow *p*-subgroup of a group *G* is normal if and only if it is the only sylow *p*-subgroup of *G*.

5

(g) Suppose that G is a finite group and p|O(G) where p is a prime number, then prove that there is an element a in G such that O(a) = p.

Or

Let G be a group of finite order and p be a prime number. If $p^m|O(G)$ and $p^{m+1}|O(G)$, then prove that G has subgroup of order p^m .
