Total No. of Printed Pages-4

5 SEM TDC DSE PHY (CBCS) DSE 1 (H) 2021

(Held in January/February, 2022)

PHYSICS

(Discipline Specific Elective)

(For Honours)

Paper: DSE-1

(Classical Dynamics)

Full Marks: 80 Pass Marks: 32

Time: 3 hours

The figures in the margin indicate full marks for the questions

1. Choose the correct answer:

1×5=5

A particle of mass m moves along a straight line and attached towards a on this line with а proportional to the distance x from the point. The Lagrangian of the system is

(i)
$$\frac{1}{2}mv^2 + \frac{1}{2}kx^2$$

(i)
$$\frac{1}{2}mv^2 + \frac{1}{2}kx^2$$
 (ii) $\frac{1}{2}mv^2 - \frac{1}{2}kx^2$

(iii)
$$mv^2 + \frac{1}{2}kx^2$$
 (iv) $\frac{1}{2}mv^2 - kx$

$$(iv) \frac{1}{2}mv^2 - kx$$

(b) The rest mass of an electron is m_0 . What will be its mass when it moves with velocity 0.6c?

(i)
$$m_0$$

(ii)
$$\frac{5}{4}m_0$$

(iii)
$$\frac{4}{5}m_0$$

(iv)
$$2m_0$$

(c) A body with a charge q starts from rest and acquire a velocity 0.5c. Then the new charge on it is

(i)
$$q\sqrt{1-(0\cdot 5)^2}$$
 (ii) $\frac{q}{\sqrt{1-(0\cdot 5)^2}}$ (iii) $q\sqrt{1-0\cdot 5}$ (iv) q

(d) If ϕ is the scalar potential and \overrightarrow{A} is the vector potential, the total potential energy of a charged particle in an electromagnetic field is

(i)
$$q\phi + \frac{q}{c}(\vec{A} \cdot \vec{B})$$
 (ii) $q\phi + \frac{q}{c}(\vec{A} \cdot \vec{E})$
(iii) $q\phi - \frac{q}{c}(\vec{A} \cdot \vec{v})$ (iv) $q\phi + \frac{q}{c}(\vec{A} \cdot \vec{\phi})$

- (e) For a linear oscillatory system, the total energy is proportional to
 - (i) square of the time period
 - (ii) amplitude
 - (iii) square of the amplitude
 - (iv) square of the frequency
- 2. (a) Discuss qualitatively the equations of motion of Newton, Lagrange and Hamilton highlighting the difference between the three.
 - (b) Set up the Lagrange's equation for a simple pendulum and solve for θ . 4+3=7

(c) State and explain Hamilton's (variational) principle and deriveLagrange's equation from it. 2+4=6

Or

Explain homogeneity of time and isotropy of space and their connection with conserved quantities. 3+3=6

(d) Given that the Hamiltonian has implicit dependence on time, prove that it is a constant of motion.

Or

Show that the shortest distance between two points in a plane is a straight line.

- **3.** (a) Explain dynamical equilibrium with examples.
 - (b) Find the expressions for frequencies of two-coupled one-dimensional harmonic oscillator.
- **4.** (a) A muon (life time 2×10^{-6} sec) traveling through the laboratory at three-fifths the speed of light. How long does it last in the laboratory?
 - (b) Two electrons are leaving a radioactive sample in opposite directions, each having a speed 0.67c with respect to the sample. The relative speed of one electron to the other is 1.34c according to classical physics. What is the relativistic result?

3

5

2

6

5

(Continued)

(c) Show that the space-time interval is an

•	invariant under Lorentz transformation.	4
(d)	Write down the Lorentz transformation	
	equation in matrix form.	3
	Or	
	Is it possible for an external force to be	
٠	acting on a system and relativistic	
•	momentum to be conserved? Explain.	
(e)	Construct Minkowski space and	
	calibrate it.	5
(f)	Explain simultaneity, length contraction	
	and time dilation with the help of	
	space-time diagram.	3
(g)	Discuss the physical conditions of	
	space-like and time-like intervals. 2+2	=4
(h)	Deduce the relativistic energy	
	momentum relation $E^2 = p^2c^2 + m_0^2c^4$.	4
	Or	·
	Discuss Doppler effect from four-vector	
	perspective.	
(i)	Define four-vector, rest mass energy,	
19	world line and proper time. 1×4	=4
(a)	Define fluid, liquid and gas, and	·
(u)	establish the equation of continuity for	
	fluid. 3+5	_Q
	\(\frac{1}{2}\)	-0
(b)	Write the expression for Reynolds'	•
	number and explain the states of flow of	
	liquid for lower and higher Reynolds'	•
	number.	2
	** <u></u> *.	

5.