4 SEM TDC CHMH (CBCS) C 10

2022

(June/July)

CHEMISTRY

(Core)

Paper: C-10

(Physical Chemistry)

Full Marks: 53

Pass Marks: 21

Time: 3 hours

The figures in the margin indicate full marks for the questions

- 1. Choose the correct answer from the following: 1×4=4
 - (a) The relation between equivalent conductance (Λ_e) and molar conductance (Λ_m) for Al₂(SO₄)₃ is
 - (i) $\Lambda_e = \Lambda_m$
 - (ii) $\Lambda_e = \frac{1}{2} \Lambda_m$
 - (iii) $\Lambda_e = \frac{1}{3} \Lambda_m$
 - (iv) $\Lambda_e = \frac{1}{6} \Lambda_m$

- (b) E° values of Mg²⁺ | Mg, Zn²⁺ | Zn and Fe²⁺ | Fe are -2·37 V, -0·76 V and -0·44 V respectively. Which of the following statements is correct?
 - (i) Mg²⁺ oxidises Fe
 - (ii) Zn oxidises Fe2+
 - (iii) Zn reduces Mg²⁺
 - (iv) Zn reduces Fe2+
- (c) The ionic mobility for alkali metal ions in aqueous solution is maximum for
 - (i) Na+
 - (ii) K+
 - (iii) Rb+
 - (iv) Li+
- (d) The molecular dipole moment of chlorobenzene is 1.69 D. The dipole moments of o-, m- and p-dichlorobenzenes are
 - (i) 1.69 D, 2.93 D and 0 respectively
 - (ii) 0, 2.93 D and 1.69 D respectively
 - (iii) 2.93 D, 1.69 D and 0 respectively
 - (iv) 1.69 D, 2.69 D and 1.69 D respectively

- **2.** Answer any *four* of the following questions: $2 \times 4 = 8$
 - (a) The standard reduction potential of Cu²⁺|Cu and Cu²⁺|Cu⁺ are 0.337 V and 0.153 V respectively. Calculate the standard electrode potential of Cu⁺|Cu half-cell.
 - (b) What is cell constant? How is it determined?
 - (c) Distinguish between an electrolytic cell and a galvanic cell.
 - (d) Why does the variation of equivalent conductivity on dilution of a strong electrolyte differ from that of a weak electrolyte?
 - (e) How do you account for the fact that the dipole moment of ethyl bromide (2.05 D) is considerably larger than that of chlorobenzene (1.70D)?
- **3.** Answer any *two* of the following questions :

 $7 \times 2 = 14$

(a) (i) Explain clearly what is meant by
Wien effect and Debye-Falkenhagen
effect. 2+2=4

(ii) The specific conductance of a 0.01 mol dm⁻³ aqueous acetic acid solution at 298 K was 1.65×10⁻² S m⁻¹. The equivalent conductance of acetic acid infinite dilution was 390.7×10^{-4} S m² mol⁻¹. Calculate the degree of ionization (a) and the ionization constant (K_a) of the acid.

(b) (i) A decinormal solution of AgNO₃ was electrolyzed between platinum electrodes. After passing a small current for 2 hours, a fall of concentration of 5·124×10⁻⁴ gm equivalent occurred in the anodic solution. The mass of copper deposited in a copper coulometer placed in series was found to be 0·0388 gm. Calculate the transport number of silver and nitrate ions in silver nitrate (AgNO₃). (Equivalent mass of Cu = 31·8)

(ii) Discuss how the measurement of conductance can be applied to determine the solubility of a sparingly soluble salt.

(c)	(i)	Draw t	the c	urve	showi	ng	the
		variation	of	condu	ictance	e w	hen
		acetic ac	cid sol	ution i	is titra	ted v	with
		sodium	hydro	oxide	soluti	on	and
		explain	the	reaso	ns o	f s	uch
		variation	1.				2+2=

(ii) Derive the relation between ionic mobility and molar ionic conductance.

4. Answer any two of the following questions:

 $7 \times 2 = 14$

3

3

3

2

(a) (i) Derive a relation between the electromotive force and the equilibrium constant of a cell reaction.

(ii) What is the potential of the cell containing two hydrogen electrodes as represented below?

Pt, H₂ (g) $|H^+(10^{-8} M)| |H^+(0.001 M)| H_2$ (g), Pt

(iii) How will pH of aq. NaCl solution be effected when it is electrolyzed?

(b) (i) Cu does not dissolve in HCl but in HNO₃. Explain.

(ii) Which alkali metal is the most powerful reducing agent in aqueous solution and which halogen is the strongest oxidizing agent?

2

3

4

3

- (iii) Discuss the cell construction and cell reactions of standard hydrogen electrode. State whether this electrode is reversible with respect to H₂ gas or H⁺ ions. 2+1=3
- (c) (i) The Gibbs' free energy for decomposition of Al₂O₃ at 500 °C is as follows:

$$\frac{2}{3}\text{Al}_2\text{O}_3 \rightarrow \frac{4}{3}\text{Al} + \text{O}_2$$
$$\Delta G = -966 \text{ kJ mol}^{-1}$$

Calculate the potential difference needed for electrolytic reduction of Al₂O₃.

- (ii) What are concentration cells?

 Derive an expression for the e.m.f.

 of a concentration cell without
 transference.
- (iii) What do you mean by standard electrode potential?
- (d) (i) Metal rod A is dipped in $0.1 \, M$ solution of AsO_4 . The salt is 95% dissociated at this dilution at 298 K. Calculate the electrode potential. Given $E_{A^{2+}|A}^{\circ} = -0.76 \, V$.

- (ii) Calculate K_c for the cell reaction $4\mathrm{Br}^- + \mathrm{O}_2 + 4\mathrm{H}^+ \to 2\mathrm{Br}_2 + 2\mathrm{H}_2\mathrm{O};$ $E_{\mathrm{cell}}^\circ = 0.16~\mathrm{V} 2$
- (iii) "Daniell cell is a reversible cell."

 Justify the statement.
- **5.** Answer any *two* of the following questions: $5\times2=10$
 - (a) (i) Define any two of the following: 1×2=2
 - (1) Electronic polarization
 - (2) Atomic polarization
 - (3) Orientation polarization
 - (ii) Stating all the terms involved, write the suitable form of Clausius-Mossotti equation. Explain why this equation is applicable for non-polar molecules and not for polar molecules.

 1½+1½=3
 - (b) Define paramagnetic and diamagnetic substances on the basis of their values of magnetic susceptibility and intensity of magnetization. The dipole moment of HCl molecule is 1.03D and it is 17% ionic. Find its bond distance. 2+3=5

$$\begin{bmatrix} e = 1.60 \times 10^{-19} c \\ = 4.8 \times 10^{-10} \text{ esu} \end{bmatrix}$$

3

(c) What is magnetic susceptibility? What is the relation between magnetic susceptibility and magnetic moment? Explain. What is the SI unit of magnetic susceptibility? 2+2+1=5

3

- **6.** Answer any *one* of the following questions :
 - (a) Discuss Gouy's method for determination of magnetic susceptibility of a substance.
 - (b) The dielectric constant of nitrogen at NTP is 1.004 and also its density is 1.25 gm/litre. Calculate the induced molar polarization and polarizability of the molecule.
 - (c) Calculate the liquid junction potential associated with the following cell at 25 °C:
 - Ag (s), AgCl (s), HCl ($m_1 = 1.0$, $\gamma_1 = 0.809$) || HCl ($m_2 = 0.05$, $\gamma_2 = 0.830$), AgCl (s), Ag (s) If the transference number of H⁺ is 0.83.

* * *