4 SEM TDC MTMH (CBCS) C 9

2022

(June/July)

MATHEMATICS

(Core)

Paper: C-9

(Riemann Integration and Series of Functions)

Full Marks: 80
Pass Marks: 32

Time: 3 hours

The figures in the margin indicate full marks for the questions

- **1.** (a) State two partitions of the interval [1, 2] such that one is a refinement of the other.
 - (b) Consider the function f(x) = x on [0, 1] and the partitions

$$P = \{x_i = \frac{i}{4}, i = 0, 1, 2, 3, 4\}$$

$$Q = \{x_j = \frac{j}{4}, j = 0, 1, 2, 3, 4, 5, 6\}$$

Determine the lower sums and upper sums of f with respect to P and Q. State the relations between L(f, P) and L(f, Q); U(f, P) and U(f, Q).

22P/1275

(Turn Over)

1

4

Or

For a bounded function f on [a, b] with its bounds m and M, show that $m(b-a) \le L(f, P) \le U(f, P) \le M(b-a)$ If or any partition P of [a, b].

- 2. (a) Define a tagged portion of a closed interval. Define Riemann sum of a bounded function. 1+1=2
 - (b) Let $f:[a, b] \to \mathbb{R}$ be integrable. Then show that

$$\left| \int_{a}^{b} f(x) dx \right| \le \int_{a}^{b} |f(x)| dx$$

- (c) Answer any four questions from the following: $5\times4=20$
 - (i) Let $f:[a, b] \to \mathbb{R}$ be bounded and monotonic. Then show that f is integrable.
 - (ii) Let $f:[a, b] \to \mathbb{R}$ be continuous. Then show that f is integrable.
 - (iii) Let $f:[a, b] \to \mathbb{R}$ be integrable. Define F on [a, b] as $F(x) = \int_a^x f(t)dt$; $x \in [a, b]$. Show that F is continuous on [a, b].
 - (iv) Let f be continuous on [a, b]. Show that there exists $c \in [a, b]$ such that

$$\frac{1}{b-a}\int_{a}^{b}f(x)dx = f(c)$$

(v)	Show	that	if	f : [a,	$b] \to \mathbb{R}$	is
	integra	able, the	en f	is in	tegrable	on
	$[a \ b]$					

- (vi) Let $f:[a, b] \to \mathbb{R}$ be Riemann integrable. Then show that f is bounded on [a, b].
- 3. (a) Discuss the convergence of $\int_1^\infty \frac{dx}{x^p}$ for various values of p.
 - (b) Attempt any one: Show that—

(i)
$$B(m, n) = B(n, m)$$

(ii) $\Gamma(m+1) = |m; m \in \mathbb{N}$

- (c) Show that $\int_0^\infty x^{n-1}e^{-x}dx$ exists.
- **4.** (a) Define pointwise convergence of sequence of functions.
 - (b) Define uniform convergence of sequence of functions.
 - (c) State and prove Weierstrass M-test for the series of functions.
 - (d) State and prove Cauchy's criterion for uniform convergence of a series of functions.

Or

Let $f_n: J \subseteq \mathbb{R} \to \mathbb{R}$ converge uniformly on J to f. Let $f_n \forall n$ is continuous at $a \in J$. Then show that f is continuous at a.

3

3

1

2

4

4

(e)	Let $\{f_n\}$ be a sequence of continuous						
	functions on [a, b] and $f_n \to f$ uniformly						
	on [a, b]. Show that f is continuous and						
	therefore integrable. Establish that						

(f)

 $\int_{a}^{b} f(x)dx = \lim \int_{a}^{b} f_{n}(x)dx$

Let $f_n: (a, b) \to \mathbb{R}$ be differentiable. Let there exist functions f and g defined on (a, b) such that $f_n \to f$ and $f'_n \to g$ uniformly on (a, b). Show that f is

4

5

5

4

4

5

(g) Consider the function $f_n: \mathbb{R} \to \mathbb{R}$ defined by $f_n(x) = \frac{\sin nx}{n}$. Show that (f_n) converges pointwise and uniformly to the zero function.

differentiable and f' = g on (a, b).

5. (a) Define a power series around a real number c. Give an example of power series around the origin. 1+1=2

(b) Define radius of convergence of a power series. Show that the radius of convergence R of a power series $\sum a_n x^n$

is given by $\frac{1}{R} = \lim \left| \frac{a_{n+1}}{a_n} \right|$.

(c) State and prove Cauchy-Hadamard theorem.

(d) Show that if the series $\sum a_n$ converges, then the power series $\sum a_n x^n$ converges uniformly on [0, 1].