4 SEM TDC PHYH (CBCS) C 10

2022

(June/July)

PHYSICS

(Core)

Paper: C-10

(Analog Systems and Applications)

Full Marks: 53
Pass Marks: 21

Time: 3 hours

The figures in the margin indicate full marks for the questions

1. Choose the correct answer:

 $1 \times 5 = 5$

- (a) When reverse bias is applied to a junction diode
 - (i) width of depletion layer decreases
 - (ii) potential barrier increases
 - (iii) potential barrier decreases
 - (iv) minority carrier increases

The rectification efficiency of full-wave rectifier is _____ of half-wave rectifier. (i) equal (ii) half (iii) double (iv) 1.21 times Quiescence is a state of (i) activity (ii) inactivity (iii) amplification (iv) switching In a transistor amplifier, the input impedance should be (i) low (ii) high

- (e) Which of the following electrical characteristics is not exhibited by an ideal OP-AMP?
 - (i) Infinite voltage gain
 - (ii) Infinite bandwidth
 - (iii) Infinite output resistance
 - (iv) Infinite slew rate
- **2.** (a) Explain how depletion layer is formed under unbiased situation of a *p-n* junction diode.
 - (b) Explain the current flow mechanism in forward and reverse biased *p-n* junction diode.

Or

Define the mobility of charge carriers and conductivity. Obtain an expression for the electrical conductivity of an intrinsic semiconductor. 1+3=4

3

4

(iii) negligible

(iv) None of the above

3.	(a)	Explain with circuit diagram, the Zener diode as a voltage regulator.	3
	(b)	Describe the working of LED.	2
4.	(a)	Draw the C-E circuit of a transistor. Sketch its output characteristics. Explain the active, cut-off and saturation regions. 1+1+2:	=4
	(b) -	Define α and β of a transistor. Write the relation between them.	2
5.	(a)	Draw a voltage-divider bias circuit and derive an expression for its stability factor.	4
		Or	

current $I_C = 1$ mA and $V_{CE} = 4$ V. If a

load resistance of 2 k Ω is connected in

the collector circuit, then find the

base resistance to be connected. (For

germanium transistor $V_{BE} = 0.3 \text{ V}$

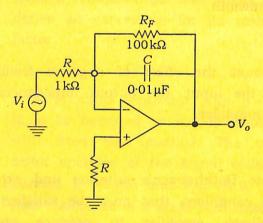
(b) Draw the small signal hybrid equivalent circuit of a common-emitter transistor amplifier and derive the expressions for current gain and input impedance.

Or

Explain class A, class B and class C amplifiers with graphical representation.

- **6.** Draw and discuss the frequency response curve of an *R-C* coupled transistor amplifier showing cut-off frequencies and the bandwidth.
- 7. Discuss the effect of negative feedback on the input and output impedances of an amplifier.
- 8. State Barkhausen's criterion and explain the conditions that must be satisfied for feedback amplifier to produce steady oscillations.

 1+2=3


3

3

Or

Draw circuit diagram of an R-C phase shift oscillator and explain its operation.

- 9. (a) What is an OP-AMP? Draw the schematic block diagram of basic OP-AMP. 1+2=3
 - (b) Explain with circuit diagram, the adder and subtractor using OP-AMP. 4
 - (c) Determine the lower frequency limit (critical frequency) for the integrator circuit shown below:

Or

Discuss OP-AMP as log amplifier.

10. Draw the block diagram of successive approximation type A/D converter.

Or

3

Draw the circuit diagram of weighted resistor type D/A converter.

* * *

3

3