Total No. of Printed Pages-5

6 SEM TDC MTMH (CBCS) C 13

2022

(June/July)

MATHEMATICS

(Core)

Paper: C-13

(Metric Spaces and Complex Analysis)

Full Marks: 80
Pass Marks: 32

Time: 3 hours

The figures in the margin indicate full marks for the questions

1.	(a)	Every non-empty set can be regarded as a metric space. State true or false.	1
	(b)	Write when a metric is called a discrete metric.	1
	(c)	Write the definition of an open set in metric space.	2
	(d)	Define complete metric space.	2

22P/785

(Turn Over)

(e)	If (X, d) is a metric space and $x, y, z \in X$ be any three distinct points, then show					
	that $d(x, y) \ge d(x, z) - d(z, y) $.					
<i>(f)</i>	Answer any <i>two</i> from the following: $5\times 2=10$					
	(i) Prove that in any metric space X, each open sphere is an open set.					
	(ii) Let X be any non-empty set and d a function defined on X, such that $d: X \times X \rightarrow R$ defined by					

=1, if $x \neq y$

Prove that d is a metric on X.

d(x, y) = 0, if x = y

(iii) If (X, d) be a metric space and $\{x_n\}$, $\{y_n\}$ are sequences in X such that $x_n \to x$ and $y_n \to y$, then show that $\{d(x_n, y_n)\} \to d(x, y)$

- (iv) Prove that the limit of a sequence in a metric space, if it exists, is unique.
- 2. (a) Real line R is not connected. State true or false.
 - (b) Write one property of continuous mapping.
 - (c) Write the definition of uniform continuity in a metric space. 2

(d)	Write	the	statement	of	fixed	point
	theore	m.				

- (e) Write the definition of contracting mapping.
- (f) Show that homeomorphism on the set of all metric spaces is an equivalence relation.

Or

Let X and Y be metric spaces and f a mapping of X into Y. Show that f is continuous at x_0 if and only if $x_n \to x_0 \Rightarrow f(x_n) \to f(x_0)$.

- 3. (a) If (a, b) = a(1, 0) + b(0, 1), then write the value of (0, 1)(0, 1).
 - (b) Write an example of a multiple valued function of a complex variable.
 - (c) Define derivative of a function of complex variable.
 - (d) Write the Cauchy-Riemann equations in polar form.
 - (e) Show that $\lim_{z\to 0} \frac{\overline{z}}{z}$ does not exist. 4

Or

Show that $|z_1z_2|^2 = |z_1|^2 |z_2|^2$.

1

1

2

3

6

1

1

2

2

(f) Prove that $f(z) = z^2 + 2z + 3$ is continuous everywhere in the finite plane.

5

1

1

1

1

4

4

Or

Prove that if w = f(z) = u + iv is analytic in a region R, then

$$\frac{dw}{dz} = \frac{\partial w}{\partial x} = -i \frac{\partial w}{\partial y}$$

- 4. (a) Define an analytic function at a point.
 - Write the interval of θ in the principal value of $\log z = \log r + i\theta$.
 - (c) Write sinh z in terms of exponential functions.
 - (d) Write the value of $\int_C dz$ where C is a closed curve.
 - (e) Show that the function $f(z) = e^{x+iy}$ is analytic.
 - (f) Find

$$\int_0^1 z e^{2z} dz$$

Or

Evaluate $\int_C \overline{z} dz$ from z = 0 to z = 4 + 2i along the curve C given by $z = t^2 + it$.

5. (a) Obtain Taylor's series for the function

$$f(z) = \frac{(z-2)(z+2)}{(z+1)(z+4)}$$

when |z| < 1.

4

6

2

(b) State and prove Liouville's theorem.

Or

Prove that the series

$$z(1-z)+z^{2}(1-z)+z^{3}(1-z)+\cdots$$

converges for |z| < 1.

- 6. (a) Write the statement of Laurent's theorem.
 - (b) Expand

$$f(z) = \frac{1}{(z+1)(z+3)}$$

in a Laurent series valid for 1 < |z| < 3.

Or

Prove that the sequence $\left\{\frac{1}{1+nz}\right\}$ is uniformly convergent to zero for all z such that $|z| \ge 2$.
