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ABSTRACT

The thesis is based on the synthesis and characterization of a few chosen
heterogeneous catalysts which find catalytic applications in some valuable organic
transformations. The catalysts explored in this research work include magnetic
nanocatalysts, polymer, simple metal oxide and some novel biowaste-based compounds.
The catalytic compounds are analyzed by various characterization techniques which not
only validate their formation but also provide knowledge ‘about their properties,
functionalities, structure and morphology. The acid/base solid compounds are then tested
for their probable catalytic activities in number of chemical reactions that include
tetrahydropyranylation/depyranylation, Henry reaction, Wittig reaction, transesterification
of triglycerides and acetalization reaction of glycerol. The aspects of green chemistry are
specially kept in mind while designing the catalytic protocols. In most of the cases, the use
of additional solvents in reaction systems is avoided promoting solvent-free conditions.
Apart from room-temperature procedures, ultrasonic-assisted and microwave-assisted

reactions are also performed in some transformations in order to afford time and energy-

efficient methods.

At the preface, Chapter 1 sheds light on the historical background of catalysis
followed by chronology of heterogeneous catalysis and its mechanistic working principle
and advantages over homogeneous catalysis. Different categories of heterogeneous
catalysts are discussed with their individual plusses and other important aspects. All these
lead to the motivation, scope and objectives of the present research work. In Chapter 2,
systematic literature survey on heterogeneous catalysis in the field of chemical reactions
mentioned in this research work are discussed. The survey validates that application of
heterogeneous catalysts in these organic transformations is in recent trend and fabricating

efficient and recyclable heterogeneous green catalytic systems for these reactions can be a

worthwhile practice.

Chapter 3 presents a magnetite nanoparticle based core-shell magnetic nanocatalyst
which effectively catalyzes protection/deprotection of alcohols with dihydropyranes under
solvent-free, room temperature condition. In addition, tetrahydropyranyl ethers could also
be deprotected to the parent alcoholic compounds in the presence of MeOH using the same
catalyst. After completion of the reactions, the catalyst is easily separated from the reaction

medium using an external magnet, which ameliorated the overall synthetic process.
\
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In Chapter 4, tetrahydropyranylation/depyranylation reactions for both alcohol an
phenols are demonstrated using a polymer catalyst. The ion-exchange resin based cataly
was synthesized in laboratory and characterized with various analytical techniques
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biowaste-derived catalyst is thoroughly investigated by various characterization techniques
which finally presents a low-cost, eco-friendly, highly efficient green catalytic method for

the synthesis of nitroalcohols with excellent atom-economy and E-factor.
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Another similar novel biowaste-derived catalyst M. acuminata banana trunk ash
was demonstrated in Chapter 6 which was used for transesterification reaction to synthesize
biodiesel product from soybean oil. A high yield of biodiesel (98.95 %) was achieved and

the catalyst was recoverable up to 4 times without much depreciation in its catalytic

activity.
)
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Chapter 7, on the other hand, accounts for a microwave-assisted one-pot Wittig

reaction method using basic alumina as catalyst-support. The protocol is generalized for
both stabilized and semi-stabilized ylides and prominent £-selectivity is noticed during
olefination. In addition, owing to the solid state nature of the reactions, the procedure
prevented the need for tedious aqueous extraction at the end of the reaction

O 0 . : o)
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I
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/©/ ¥ OEt MW, 90° C, 700W

R X= Cl, Br,| R
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In conclusion, synthetic utility of a few selected heterogeneous catalysts are

established in this thesis for some useful organic reactions. The catalytic paths are

vii



optimized to be effective as well as environment-friendly in nature. The presented catalysts
can be immensely useful for forthcoming research and can be investi gated for wide range

of organic synthetic processes in near future.
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CHAPTER

1

Introduction

“Chemistry without catalysis would be a sword without a handle, a light without brilliance,
a bell without sound.”' — Alwin Mittasch

Cafalysis is an inevitable part of chemistry. History of catalysis dates back to the
onset of civilization, when mankind inculcated the art of fermentation to produce alcohol
from sugar.>? It was then in the alchemic period, in 1552, first report of using sulfuric acid
as catalyst in transformation of alcohol to ether by Valerius Cordus was documented.® In
“Alchemia”, the first known textbook of chemistry, Libavius mentioned the phenomenon of
catalysis mostly as the conversion of base metals into noble metals.>*

However, studies in catalysis was first systematically investigated and categorized
by noted Swedish scientist Jons Jacob Berzelius in 1836.2° He is also credited for first
coining the term ‘Catalysis’ and forward the basic idea of catalysts as- “Several simple or
compound bodies, soluble and insoluble, have the property of exercising on other bodies an
action very different from chemical affinity. By means of this action they produce, in these
bodies, decompositions of their elements and different recombinations of these same
elements to which they remain indifferent¢".

Once it was established that catalysis is pertinent in almost all kind of chemical
reactions, investigation of catalytic applications in various reactions became an
indispensable practice in research in chemistry. Along with that, their translation into
industrial implementation also started vigorously. Today millions of catalytic processes have
surrounded both academia, industry and even daily life- starting from iron catalyzed large-
scale industrial production of ammonia by Haber-Bosch>*# process to development of
exhaust gas catalyst systems® (for converting toxic CO to COz) in vehicles, production of
biofuel, drug and polymer synthesis etc. Note worthily, all the biological processes in living
world are also governed by catalytic action of some proteins, called enzymes. At present,
above 85% of chemicals are produced via catalytic processes, while 15% to 20% of
economic activities in developed countries are directly dependent upon catalysis.!®!" In
2016, the global market value of catalysts is around USD 23.08 billion which is projected to
reach USD 34.06 billion by the year 2025. The economic background of catalysis in present




world can be estimated by these above statistics. The industrial usage of catalysts is

predominantly distributed among four major sectors- energy sector, polymer industry,
synthesis of fine and bulk chemicals and environmental abatement processes.'!

In the first definition itself, by using the terms “soluble and insoluble compound
bodies” Berzelius distinctly categorized catalysts into two major classes; which soon
popularized as homogeneous and heterogeneous catalysts. Homogeneous catalysts partake

the same phase as of the reactants and products while heterogeneous catalysts are of different
phases from reactant and product phase.

1.1 Heterogeneous catalysts

Mostly, heterogeneous catalysts are solid materials which are not miscible in liquid or gases

but it may include liquid catalyst in gaseous reaction mixture and even immiscible%’ (i
catalysts in liquid reaction mixture t0o.'? The solid surfaces of solid heterogeneous cat 1lqUI
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Diffusion of the substrate molecules to the surface of the catalyst. This also involves
two stages- first external diffusion of the molecules to the bulk surface followed by
their internal diffusion towards the pores of surface to grasp the active sites.
Physisorption of the reactant particles over the catalyst surface via van der Waals
forces.

Chemisorption of the reactant molecules. This takes place by formation of chemical
bonds of the molecules to the catalyst surface.

Chemical reaction between the reactant molecules leading to result the conversion
into product molecules via formation of intermediates.

Desorption of the product molecules from active sites.

Diffusion of the product particles from the pores of catalyst surface back to the
surrounding.

Each mechanistic step plays their own role in the whole process of catalytic route. It is
therefore difficult to opine which factors decide whether a surface will act as good catalyst
or not. Sabatier’s principle suggests that “a good catalyst provides an optimum strength of
bonding between the reactants and the catalyst surface”.'*! To understand the magic behind
the catalytic activity of a solid surface, it is crucial to understand the adsorption bond of the

surface and substrate molecules.

Catalytic steps of Heterogeneous Catalysis

e — o (e
' 19
Diffusion of
reactants ‘ ?
, Desorption \

of products
Adsorption into

surface Isolated

product
O
Chemical Reaction Formation of
\J products

FIGURE 1.1 Catalytic mechanism of heterogeneous catalysis.

1.1.2. Advantages and scope of heterogeneous catalysis

Both the homogeneous and heterogeneous catalytic systems have their own series of pros
and cons. Homogeneous catalysts due to their better interaction with reacting particles can
show high activity and selectivity and that is why they are still being used in some fine
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1.2 Nano particles as heterogeneous catalysts

In the present era, nanotechnology has brought revolutionary hurricane of changes to diverse
domains like medicine, electronics, catalysis, food industry, communication, fine chemicals,
energy, environmental science etc.’** Harnessing nanotechnology to catalytic processes is
one of the most explored key areas in contemporary research.’” Due to the tiny nano-sized
particles, the exposed surface area of catalysts increase massively which turn out to be the
reason behind the excellent activity of nanocatalysts. This eventually marks them as ‘bridge
between homogeneous and heterogeneous catalysts’.” Homogeneous catalysts although
have several major drawbacks regarding catalyst separation, but their superb catalytic
activity and selectivity can never be overlooked.***" This activity arises due to the high
degree of interaction between reactant and catalyst molecules while activity of
heterogeneous catalysts is, to some extent, restricted due to limited number of active sites
on catalyst surface. But dramatic rise in activity can be observed when nanoparticles are
used as heterogeneous catalysts. Owing to their tiny size, nanocatalysts have very large
surface area which leads to better exposure of catalytic active sites and enables better contact
between reactant and catalyst mimicking homogeneous catalysts.*'*** The insoluble nature
of the catalysts in reactant phase makes them easily separable and isolable incorporating all
the goodness of heterogeneous counterpart too. Another major benefit of using nanocatal ysts
is that the physical and chemical properties of these catalysts like size, shape, morphology,
functionality etc. can be tuned to manipulate the activity and selectivity of a catalyst.**5 All
these advantageous properties of nanocatalysts is therefore fascinating the scientific
community in recent times leading flurry of research practices in heterogeneous

nanocatalysis.

Heterogeneous
catalysts

Homogeneous
catalysts

High accessibility M
1-100 nm

Easy separatic-m“
High activity ‘ Efficient recyclability

But, Difficult separation N But, Less accessibility
** High accessibility
<% High activity KO r ARty
» Efficient recoverability
* Reusable

No recyclability

S

FIGURE 1.3 Schematic diagram of advantages of nanocatalysis over homogeneous and heterogeneous
catalysis

Metallic nanoparticles has been finding prominent significance in both industry and
academia over several decades due to their widespread role in various fields like catalysis,*
biomedical applications,*”*’ engineering® etc. Varying some simple physical properties like
size, shape, they can be tailored to show different physical and chemical properties. These
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reaction pathway makes this a universal technique for production of nanoparticles in
laboratory-scale.”> Liquid-phase technique is best way to tailor size, shape, morphology
and composition of NPs by tuning synthetic pathway, reaction conditions, pH etc. Since
size of particle plays a very crucial part for activity of nanocatalysts, different stabilizing
agents or capping agents can be used for well-controlled synthesis of NPs. On the other hand,
template-mediated synthesis allows production of nanoparticles of specific shapes as

required.””8¢

In the bottom-up mechanochemical processing technology, high energy dry milling
process is used to induce chemical reaction between precursor materials that leads to
formation of nanoscale composite structure of desired phase within the solid milieu. This
solid-phase technology is advantageous in terms of operational simplicity, agglomeration-
free and uniform sized nanoparticle synthesis but removal of solid matrix sometimes leads

to additional cost to the processing.?'#?

Currently more than twenty synthetic methods can be listed that are known to
laboratory scale production of nanoparticles while for commercial production, most of the
industry use vapor-phase (43%) or liquid-phase (41%) synthetic techniques.®

1.2.2 Magnetic Nanocatalysts

Although the extraordinary surface area-to-volume ratio brings tremendous accessibility and
activity to nanocatalysts, but sometimes isolation of these nanosized particles from the
reaction system is not a piece of cake.* As metal NPs form high stabilized solution, so
conventional techniques like filtration are not effective to separate the tiny particles.
Whereas introduction of sophisticated techniques like cross-flow filtration, high-speed
centrifugation etc. for catalyst recovery hampers the sustainability and economy of the
catalytic protocol.3*$5 Magnetic nanocatalysts have emerged as a viable solution to
overcome this shortcomings. The magnetic nature of these materials are exploited to retrieve
the catalyst from reaction mixture using an external magnet with utmost ease and simple
manner. Thus magnetically retrievable nanocatalysts not only offers attractive scope for

great accessibility and activity but also mitigates the challenge of recoverability of
nanocatalysts.5¢-88

Various magnetic nanomaterials of metals like Fe, Co, Ni etc. have been reported in
literature till date. Iron oxide, especially ferrite (Fe3sO4) nanoparticles are the most
prominently investigated class of magnetic nanocatalyst due to their attractive magnetic
property, easy synthetic methods, wide scope of chemical modification and functionalization
and biocompatibility of such NPs.**%*° Functionalized Fe;04 NPs shows wide range of
applications in plethora of organic transformations like hydrogenation®, oxidation®',

: L 92,93
multicomponent reactions™™ etc.

1.3 Organic polymers as heterogeneous catalysts

Polymers have been flag-bearer of heterogeneous catalysts for a very long time. They have
been extensively used as catalyst in their own right or as supports to other homogeneous
catalytic species, stoichiometric reagents, protecting groups, substrate carriers etc.?*%

The application of polymers as heterogeneous catalysts in organic synthetic
procedure dates back to its use as ion-exchange resin catalysts in 1911.97% | G.
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pharmaceuticals, decolorizing agents in food industry etc. apart from being used in catalytic
procedures.'?'"'% The attractive distinction of these polymers with the former category is
that the cross-linked resins are highly insoluble in solvents or said as ‘macroscopically
insoluble’ and even during swelling in particular solvents, cannot form molecular
solution.”*!®"  The third category of catalysts assimilates the catalytic properties of
homogeneous transition metal complexes with the technically advantageous heterogeneous
polymeric framework. Due to the tremendous combination, these materials are appealing
researchers in various domains.'% Polymer supported phase-transfer catalysis is another
interesting field of catalysis which utilizes insoluble polymers containing active functional
groups viz. quaternary ammonium or phosphonium ions, cryptands, crown ethers etc. The
active functional groups assist the transfer of ionic nucleophile present in aqueous phase into
organic phase of the second reactant.'%

With respect to the content of this thesis and brevity purpose, a glimpse of ion-
exchange catalysts will only be outlined in this chapter.

1.3.1. Ion exchange resins as heterogeneous catalysts

There has always been a hunt for greener and safer chemicals throughout the expedition of
research in chemistry. The innovative idea of utilizing ion exchange resin materials as
heterogeneous catalysts in organic reaction was brought as a substitute for corrosive mineral
acid catalysts in the early 20" century. The mineral acids H2S0x, toluene sulfonic acid are
known for their highly corrosive action which creates hurdle in maintaining safety and
hazard control during industrial applications. A further complication arises due to the need
for neutralization of catalyst prior to catalyst separation where alkali metal oxides are added
to neutralize the acid. Higher the amount of acid catalysts used, higher is the amount of alkali
metal oxides needed for the process which finally results upsurge in the production cost as
well as large outflow of waste to the environment.'*!” All together these technical hitches
worked as a strong driver to use acid-functionalized ion exchange resin materials as catalysts
in important acid-catalyzed organic reactions. Due to the insoluble organic polymer matrix,
ion-exchange resin catalysts can be easily separated out by simple filtration providing a
corrosion-free atmosphere. Also polymer catalysts allows reactions to be carried out in wide
range of conditions comprising aqueous/non-aqueous, polar/non-polar media.'?”!% It may
be worth to mention that although the use of ion exchange resins as catalyst is a century-old
concept and it was implemented commercially more than hundred years ago, but in its early
age, the chemical properties of these resins were not preferably studied as organic molecules,
rather they were scrutinized in material point-of-view. Lack of proper analytical techniques
and instruments are also responsible for the very few structural and chemical knowledge
available for these compounds. In recent times, various acid-functionalized, base-
functionalized and even acid-base bi-functionalized (ampholytic) ion-exchange resin
catalysts are available in literature and a good number of them avails commercial production

of them.

A functionalized resin/polymer is a synthetic polymer having catalytically active
functional group chemically bonded to it. There are two possible way for anchoring the
active functional group- 1) direct polymerization or copolymerization of monomers having
the required functionality; 2) post-functionalization of synthesized polymer; 3) Self
polymerization of functional organic groups.®® The first technique is often easier to carry out
although the crucial point is to obtain the optimized condition of synthetic procedure to
maintain the physical form of the resinous material. While the later one generally provides
uniformly functionalized surface of material but it is rarely possible to achieve
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functionalization of each repeating monomer of the resin by this tecbniqge."""“‘ In fact,
different methods of preparation leads to different distribution of funcftlonahz.ed monomers
and that turns out to show variation in their activities. Therefore this remains as an area
demanding detailed investigations and more experiments in near future. Majority of the

commercial ion exchange resins involves post-function

alization during production. But
looking at the enormously evolving synthetic technologies and instrumentation and
characterization facilities, copolymerization method of func

tionalized monomers forwards
a good scope for further studies.

) 2

®
SO3H H3C"'}l_CH3 H3C_':I—CH20H20H H:;C—N—(:H3
CHy CHs
Strong acid Strong base Strong base Weak base
cation resin Type 1 anion resin Type Il anion resin anion resin

FIGURE 1.6 Some Styrene-DVB based ion exchange resins with different functionalities

Most of the ion exchange resins manufactured worldwide are based on
polymerization of styrene, cross-linked with divinylbenzene (DVB). Followed by the
formation of polymer, different functional groups viz. sulfonic acid gT(;u tertia y
quaternary amine group etc. are anchored to the polymer. Some imponle)\;q ry amine,
based ion exchange resins with their structures are mentioned in Fi g. 1.6. An
class of ion exchange resins is phenol formaldehyde resins. In F 6.
members of this category are displayed. The non-functionalized ph
repared in basic condition are known as Bakelite whi i :
r;cidic conditions are known as Novolak.'"! Resing pr;ta]rfds";‘:;;m\ylmers Symhesmed_ in
groups cross-linked with different monomers also offers important po )./phf:no],. polyamine
fields. Some commercially available ion exchange resins includ Dapphcatlons in extended
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or crystalline covalent-organic framework (COF), porous organic polymers (POP) are
therefore gaining enormous attention as heterogeneous catalysts.

The pores of polymer catalysts (or for any porous material) can be ordered as
micropores (< 2 nm), mesopores (2-50 nm) and macropores (> 50 nm) as recommended by
IUPAC. The selectivity and activity of a porous polymer highly depends upon the pore-size,
pore-volume or distribution of pores in its structure. Presence of micropores in organic
polymers is very advantageous in terms of catalyst selectivity, however it renders the
diffusion of reaction molecules resulting lower activity. Mesoporous resins can, therefore,
be a sensible solution to this problem maintaining good balance between the catalyst activity

and selectivity.''%'"!

The synthesis of POPs or generation of pores can be carried out by two ways- either
by templating or without templating. Meanwhile templates in synthesis of polymers are very
costly, and more than that, removal of templates after completion of the synthetic reaction
is an energy-consuming and waste-generating process.''® Hence template-free, simple
protocols with controlled porosity are always desirable for synthesis of porous resin
materials. The synthetic approach also influences the possible structure of a polymer. Post-
modification, although, is a widely acceptable method for polymer synthesis but it always
offers chance of pore-blocking. Copolymerization and self-polymerization processes are
therefore advantageous for porous polymer synthesis in both perspectives- functional group

concentration and porosity.

Stability of porous materials is another essential criterion for suitable applications.
The strong covalent chemical bonding imparts stability to porous organic polymers which is
sometimes difficult to maintain in the MOF and COF counterparts due to the reversible
chemical bond forming reactions between their molecular units.''>!!* Thus porous organic
polymers are much advantageous as heterogeneous catalysts due to their stability which

facilitate the excellent recovery and reuse of the catalysts.

1.4 Waste biomass-based heterogeneous catalysts

Our planet is currently struggling with the dilemma between technological advancement of
human life standard and the deterioration caused to the environment by those efforts. While
natural non-renewable resources are being used up open-handedly, but the replenishment is
continuously ignored; wastes arc generated exceeding the product and hazardous chemicals
are thrown into the atmosphere ruthlessly.''> Owing to the eve-rising concern regarding
harmful impact of chemicals, demand for cleaner teghnologies and safer chemicals is a need
of the hour. Green chemistry aims to address this problem with ‘responsible care’ of
chemical industries.!'® Since the evolving of the concept of green chemistry, waste-
minimization and waste valorization in processing technology are getting solemn attention.
To curtail the amount of waste generated in a chemical process, it is needful that the raw
material or feedstock are always renewable or recyclable, the synthetic route limits the
consumption of auxiliary substances like solvents and avoids the use of any toxic or

: : 116.117
hazardous substances in the reaction pathway.

y a key role in synthetic procedures and contributes majorly to the
cost of the protocol, it is necessary to check out the sustainability of catalﬁic substances. A
large portion of traditional catalysts are based on metals. that are toxic and preciqus.
Apparently, application of such scarce metals makes the reaction protocols highly expensive

Since catalysts pla
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In a trending practice of preparing solid acid catalysts, carbon material is obtained
by incomplete carbonization of natural organic materials which results in a rigid solid. The
resultant solid material is then functionalized with —SOsH group giving rise to a robust solid
acid heterogeneous catalyst. Different biomass waste have been explored for carbonization
which includes rice husk'?*, bamboo'?, coffee residue'?, oil palm trunk'?’, sugar cane

bagasse'28, peanut shell'?’, coconut shell'*’, fungi resdue'?!, olive cake'??, sweet potato'*,
orange peel'** etc.

Hara et al.'>® pioneered the synthetic strategy of these sulfonated carbonaceous
catalysts using incomplete carbonization of sulfoaromatic compounds.'*® This was followed
by introduction of carbonized and sulfonated solid acids derived from natural products like
sugar, starch, cellulose etc. by Toda et al.'’” which showed potential stability and catalytic
performance towards esterification reactions. Soon the carbon-source starting materials in
the technique were replaced by biomass wastes resulting possible upsurge in their economic
as well as sustainable viability. These partially carbonized solid acid carbon catalysts are
hugely recognized due to their high acid density over the hydrophobic carbon surface.
Porous structures of such materials are another significant factor which contribute to their
interesting catalytic efficiency. More important to that, the biomass-derived sulfonated
carbon catalysts are highly stable and insoluble in a wide range of solvents. Thus they carry
the potential to the temperature-limitations of ion exchange resin catalysts.'2124138 Aso due
to the hydrophobicity of carbonous surface, the in-water reactions are driven smoothly

towards forward direction.'3*!%

Studiés have shown that the catalytic performance of these class of catalysts are
largely dependent on the type of starting material used for the carbonization'?® and therefore
keen research in this field is highly desirable as important as their application in industry-

level production.
1.4.2. Biomass-derived solid base catalysts

Recently, a good number of solid base catalysts derived from biomass waste materials have
emerged as potential candidates for heterogeneous catalyst. These catalysts find applications
mainly in transesterification reactions for biodiesel production. As homogeneous alkali
catalysts leads to saponification as a side reaction in transesterification, heterogeneous
catalysts have found to be very advantageous in this context. Use of naturally abundant
resources as feedstock for catalyst preparation potentially decreases the catalyst price and

presents a green version of solid base catalyst.

The biomass-derived solid base catalysts are synthesized by using two types of
sources- waste shells and biomass ashes.''>!*1%? Since waste shells of egg'*, shrimp'*,
snail %5, oyster'*, mollusk'*” etc. are very rich in calcium (mainly as CaCOs), so heating or
calcination of these shells to certain higher temperature leads to the formation of CaO from
CaCO:s. This biowaste-derived oxide material is then utilized as heterogeneous base catalysts
in reactions. In general, CaO is obtained from limestone ore through a long synthetic route.
Therefore the method of preparing bio-derived CaO based catalyst utilizing waste shells can
be a potential substitution to the non-renewable source of limestone, also providing a step-
efficient and inexpensive route to produce Ca0.'** Owing to the basicity of CaO, calcined
waste shell derived heterogeneous catalysts show robust catalytic activity. Boro et al. 149 have
reported that the catalytic performance of these catalysts are largely dependent on the
calcination temperature used during its preparation. To explore better results, the calcined
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Motivation and scope of present work

A bn’ef assessment of literature and current scenario of catalytic research suggested the
massive si gnificance of using green catalysts in modern synthetic pathways. In order to meet
the su.stamability goal for future world, designing efficient, economic, recyclable and
corrosion-free catalysts are ‘need of the hour’ in research and requires ’further attention
Heterogeneous catalysis has proven to be much advantageous in terms of step efficienc in.
product separation, purification and recyclability of the catalyst. However the bi ye t
challenge of modern catalytic research is to cope up with the high catalytic performancggansd
selectivity of homogeneous catalysis using the heterogeneous counterpart. There are several
categories of heterogeneous catalysts, each of which has their 6wn merits.

The background of most of the class of heterogeneous catalysts are discussed in this
chapter which suggest that it is highly needful to design efficient catalysts that can take care
of the shortcomings of homogeneous catalysts and also limitations of some heterogeneous
catalysts available in previous literature. The present work was intended to carry out
synthesis of some efficient heterogeneous catalysts that can be employed to useful organic
synthetic processes. Characterization of the synthesized catalysts using various analytical
and spectroscopic techniques facilitates the thorough investigation and assessment of the
structure, property and behavior of the catalysts. The recovery and reusability of the catalysts
are another interesting dimension of study of the catalytic protocols. 4

Objective of the present work

After systematic assessment of the current status of utilization of various types of
heterogeneous catalysts, the research problem and objectives were proposed as projected

below-
> To synthesize a facile magnetic nanocatalyst, its characterization and application of

the catalyst in some valuable organic transformation.

To develop a polymer-based heterogeneous catalyst, study its functionality and

morphology and investigate its catalytic activity in some useful organic reaction

To develop novel biowaste material-based solid catalyst, investigate its COmposition

structure and morphology and to discover its catalytic applicability in some known,

organic reaction.
To explore green solvent-free methodologies for synthetically important organic

transformations.

3
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CHAPTER

2

Literature Review

2.1 Applications of heterogeneous catalysts in tetrahydropyranylation/
depyranylation reaction of organic hydroxyl compounds

2.1.1 Introduction to tetrahydropyranylation/ depyranylation reactions

Protection/deprotection of a reactive functional group is a frequently dealt with operation in
synthetic organic chemistry involving multifunctional organic compounds. Such synthetic
manipulation is used to attack selective functionalities of a molecule by blocking another
reactive group. Therefore synthesis of fine chemicals which are some complex and
polyfunctional molecules involves protection/deprotection as additional tactics to selectively
e-reactions of particular functional groups.'* Some commonly encountered
hich are often targeted for protection during any multistep synthetic
route are hydroxyl, amino, carboxylic acid, carbonyl and thiol groups. In particular, hydroxy
compounds are of massive significance in l?oth biological and synthetic interests which
constitute a major compartment of organic compounds including alcohols, phenols,
carbohydrates, steroids etc. A largq number of cqmpounds having alcoholic and phenolic
functionality find remarkable use in pharmaceutical and industrial purpose. Since —OH
functionality is prone to oxidation and assessable to many reagents, most of the multi-step
ocols require blocking of this group for further conversions. Protection of

P, therefore, plays an important role 5(iuring the synthesis and chemical

prevent sid
functional groups w.

synthetic prot
hydroxyl grou
reactions of these polyfunctional hydroxy compounds.

Tremendous efforts have been made to design ideal hydroxy protection
methodologies which led to the development of various protecting reagents over the years.
Most of the strategies include ester formation by acylation’ or tosylation® of alcohols and
etherification using silyl ethers’, alkoxyalyl ethers'® and allyl ethers''. Among range of
protecting groups, 3,4-dihydro-2H-pyran (DHP) is the most extensively used protecting
group which converts alcohol to tetrahydropyranyl (THP) ether. This is because THP ethers
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- s i ents. They can
ble under wide range of reaction conditions and chemical reag
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re}:rlgnsd strongly acidic or basic conditions as well as oxidizin
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- >4 Moreover, THP ethers can be

; thetic steps. 15.16
various S]y“ oups according to the demand of the protocol.
ﬁmcuocn:n ge;sily be carried out under mild condmon§ with u
g; Z:Sﬁ al criteria for an ideal protecting group as mentioned b
e

g and reducing agents d_uring
converted to multipllclty'of
The cleavage of the blocking

tmost selectivity whi;:ll; is an
y Schelhaas et af.!!3!17-

R-OH + @ THPRN AN /Ej
) o) DPRN oo
P ether
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(3,4-dihydro-2H-pyran)
SCHEME 2.1 Schematic representa’ 'n of tetrahydropyranylation (THPRN

ite the widespread use of protecting groups, it is has to be mentioned that use of

'Desp ts along with unrecoverable, moisture-sensitive homogeneous catalysts

protecting rt:ﬁegteiz plan very complex and leads to a laborious and lengthy maneuver
Z)nuik‘s'ss'a'l"s")l,“nhis is due to the additional (minimum of ty

)/depyranylation (DPRN)

creates extra hurdles and generates more wastes o the

environment. Apparently, the yield
of the final product of a synthetic process fa]ls dov;r(l)m_in an observable manner. Therefore,
for an ideal green synthesis to carry out, T. Anastas
principles recommended to minimize the

S twelve green chemistry
use of Protecting groups and
application of recoverable catalysts. To address these i

1ssues and consideri
role of protection strategy, scientists have adopted het

easily operable way to conduct the Protection/de

A good amount of literature can be
heterogeneous catalysts for tetrahydropyranylati
of hydroxy groups. The hetero

geneous catalystg used for tp,
includes mainly polymer-based catalysts 24.25 zeolites 2627
catalysts®®3* and metal based catalysts, 1231

have also appeared as a Powerﬁgl to hom ogen
Sartori et al.® in their review article based o Use of heterg
protection/deprotection tCChmques,'mentioned the applicatiop of any
catalysts in THPl}iNilA recent review olf Kumar ¢ 37 bt
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E:lonve%sion reactions. However, carefu] assessme:)ur THP' Cther forma;
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of literay,
ydmpyranylation/ d .
noticed to the best of our knowledge, epy‘anylatlo

found engrossed in the application of
on THPRN) and d

CPyranylation (DPRN)

is Organic transformation

includes both

on and their
re solely devoted to
N processes i yet not

Both ion-exchange resins and

Polymer-supporteq
synthesis of . THP ethers from correSponding alcoh Slrrv Ieirte foung to be utilized in the
available resin Dowex S0WX4-100 efﬁc'ently Catalyzeq Crature, The Commercially
of alcohols in dichloromethane (DCM) undey Protectiop,,
converted primary, secondary ang Cyclic

€protection reactions

e

alcohopy tolTlﬁlI}erature."’8 € protoco] smoothly
ethers Tesulting gooq yield.
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(Scheme 2.2) Apart from that, resins like amberlyst*®, nafion®’ etc. are also utilized in
THPRN reaction.

con  + @ Dowex S0WX4-100 O
CH,Cly, RT ~

o) o O
Alcohol DHP THP ether

SCHEME 2.2 THPRN reaction with Dowex S0WX4-100 resin as catalyst

A. Rahmatpour*' in 2012 designed a polystyrene-supported gallium trichloride
catalyst (PS-GaCls) as a reusable heterogeneous Lewis acid catalyst for successful .
THPRN/DPRN of alcohols and phenols (Scheme 2.3). The reaction was carried out using
DCM as solvent under room temperature and a wide range of corresponding THP ethers
were obtained in short reaction time with good yield. Also the procedure offered
chemoselectivity towards monoetherification of symmetric diols.

’\/j PS-GaCls O
RoH + | R
0 CH,Clp, RT o7 o
DHP THP ether

SCHEME 2.3 THPRN reaction with polystyrene-supported gallium trichloride catalyst

Moghadam ez al.*?, on the other hand, developed a metalloporphyrine tetrakis(p-
aminophenyl)porphyrinatotin(IV) trifluoromethanesulfonate, [Sn'"Y(TNH2PP)(OTf),] which
was heterogenized on chloromethylated polystyrene support and established the Lewis acid
as an efficient catalyst for the synthesis of THP ethers from corresponding alcohols and
phenols (Scheme 2.4). The catalyst was recycled for six catalytic runs without any loss of

[Sn"Y(TNH,PP)(OTf),@CMP]
ROH + | ~ R_ O

o CH,Cly, RT o~ O
DHP THP ether

activity.

SCHEME 2.4 THPRN reaction with polystyrene-bound tin(IV) porphyrin catalyst
2.1.3 Clay and zeolites as heterogeneous catalysts in THPRN/DPRN reactions

A vast range of naturally abundant clays have been exploited as heterogeneous catalysts for
the THPRN/DPRN process. Hoyer et al.?8 in 1986 pioneered the use of K-10 clay, which is
an acidic montmorillonite type phyllosilicate, in the THP etherification of alcohols and
phenols (Scheme 2.5). The procedure gave an efficient yet inexpensive way to convert
primary, secondary, tertiary, allylic, polyfunctional alcohols as well as phenols to respective

THP ethers.

K-10 Montmorillonite clay
ROH + | - R
Dry CH,Cly, RT * N

(0] (o} O
DHP THP ether

SCHEME 2.5 THPRN reaction with K-10 Montmorillonite clay

Recently, Shirini ez al.* in 2014 have developed a Sulfonic acid-functionalized
ordered nanoporous Na*-montmorillonite (SANM) clay-based heterogeneous catalyst and
found its application in protection/deprotection of alcohols and phenols via THPRN/DPRN
reactions using dry DCM solvent (Scheme 2.6). The protocol showed wide scope for
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tetrahydropyranylation of primary/secondary alkyl,

benzylic and phenols. Also the
synthesized THP ethers were successfully deprotected

using the same catalyst in methanol
as solvent.
DHP, SANM catalyst
Dry CH,Cl,, RT . /O
-l - \
R-OH SANM catalyst O "o
MeOH, RT THP ether

SCHEME 2.6 THPRN/DPRN reaction using sodium montmorillonite

Some other clays that have been exploited in
natural kaolinitic clay* etc. Many zeolites such as H
also established as effect’: ¢ heterogeneous catalysts

clay catalyst

THPRN reaction are sepiolite clay*,

Y zeolite*s, HSZ zeolite?’, ITQ-24® are
in THPRN/DPRN reactions.

Ersorb-4
ROH + —_—

R
o Dry CH,Cl,, RT S0 No
DHP THP ether
Ersorb4
Ar-OH + I \ R
DHP THP ether
/(j Ersorb-4 catalyst H
R _\ =
~o" o MeOH, RT ROH 4 Meoj\/oj
THP ether
Byproduct
SCHEME 2.7 THPRN/DPRN reacti i

yst
As a recent example, Hegediis ¢7 o727 have reported Ersorp
environment-friendly, inexpensive catalyst for the conversion of TH
and phenols. The etherification of alcoholg were

P ethers from alcohols
; _ Carried out jp dry D
of phenols were accomplished in toluene ag

' CM solvent while that
solvent,
successfully deprotected usj The THp Cthers

ng the same catalvt; > Synthesized were
methanol (Scheme 2.7), Yie system but Changmg the solvent to
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Tegnating the aciqg group
therif e, - TUMber of silica-based
first Xperimenteq g € erification Teaction of hydroxy
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int. after drying wag recycled
€ same cop : Vation needeq. The deprotection

yst with Protonateq solvent (Scheme

tetrahydropyranylation,
further for three another

of the THP ethers were conducted using th
2.8).
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Karimi et al.'® synthesized a sulfonated 3-mercaptopropylsilica (MPS) catalyst
which successfully catalyzed THPRN reaction of alcohols and phenols using CHCl; solvent
(Scheme 2.9). The catalyst showed high thermal stability up to 300°C, excellent
heterogeneity and reusability up to at least 8" reaction cycles. Particularly, the procedure
successfully protected allyllic alcohols without any dehydration product and isomerization

of C=C bond.
Sulfonated MPS
ROH + | - R_
(o] CHCI3, RT o~ o
DHP THP ether

SCHEME 2.9 THPRN reaction using sulfonated MPS catalyst

Recently, Azzena et al."? in 2018 have performed protection of alcohols by THPRN
reaction using NH4sHSO4 supported on silica as a recyclable solid acid catalyst and
cyclopentyl methyl ether (CPME) or 2-methyltetrahydrofuran (2-MeTHF) as solvents
(Scheme 2.10). The easy recovery of the catalyst and versatility of solvents were the key

points of the protocol.
con  + “\/j NH,HSO,@SiO, - O
0 CPME or 2-MeTHF o~ o
DHP THP ether

SCHEME 2.10 THPRN reaction using NHsHSO4 supported silica catalyst.
2.1.5 Metal based heterogeneous catalysts in THPRN/DPRN reactions

Metal based heterogeneous catalysts comzprzise significant role in the catalysis of
tetrahydropyranylation of hydroxy groups.’!2!

Recently in 2016, Yadegari et al.> reported titanium salophen, a Schiff base metal
complex, as efficient heterogeneous catalyst in THPRN reaction (Scheme 2.11). The catalyst
resulted up to 100% yield of THP ethers from corresponding alcohols and phenols within

very short time (minimum 2 minutes).

[Ti'V(salophen)(OSO,CF3),]
RoH + |l - R
O CH,Cl, ~
DHP

O O
THP ether

SCHEME 2.11 THPRN reaction using titanium salophen as heterogeneous catalyst

Ziconium dioxide or zirconia based catalysts are another promising class of catalysts
in organic transformations. Reddy et al.>* employed sulfated zirconia in the successful
protection of alcohols and phenols by THPRN (Scheme 2.12). The easy operation and
simplified work-up procedure is the major advantage of the solvent-free protocol.

@ SO,4%/Zr0, /O
. + o
R-OH o) Solvent-free AN o o
DHP THP ether

SCHEME 2.12 THPRN reaction using sulfated zirconia

Taghavi et al.' introduced a porphyrine based Vanadium(IV) complex, which is
high-valent tetraphenylporphyrinatovanadium(IV) trifluoromethanesulfonate,
[VV(TPP)(OTf),], as an effective heterogeneous catalyst for chemoselective
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v y i Is
tetrahydropyranylation of primary alcohols over secondary, tertiary alcohols and pheno
etrahy yr

(Scheme 2.13).

VIV(TPP)(OTH),] - D
R-OH + @ } R<

o Solvent-free, RT (o) ()

DHP THP ether
SCHEME 2.13 THPRN reaction using [V"(TPP)(OTf),] catalyst

2.1.6 Nanomaterials as heterogeneous catalysts in THPRN/DPRN reactions

i i ising heterogeneous catalysts
ery recent practice, nanocatalysts have arisen as promising . catal;
?;sr ?h: sr)?,nthesis oI}THP ethers. In2017, A. Rostami et al.*? have designed a functionalized

core-shell structure of ma aetic nanocatalyst which finds application in the THPRN/DPRN

of hydroxyl groups of ..ide range of alcohols and phenols (Scheme 2.14). The novel
heterogeneous catalyst 1,4-Diazabicyclo[2.2.2]octane tribromide sy

pported on magnetic
Fe;04 nanoparticles (MNPs-DABCO tribromide) is easily separable with external magnet
which minimizes loss of catalyst during separation and provides simple operability to the
reaction route.

DHP
MNP-DABCO tribromide

Dry CH,Cl,, RT R 0
ROH = ~
MNP-DABCO tribromide o

O
MeOH, RT THP ether
SCHEME 2.14 THPRN/DPRN reaction using MNPs-DABCO tribrom
In 2016, the same author and his group™ synthesized N
supported Fe3Os magnetic nanoparticles (MNPs-PSA), another magnetite based novel
magnetic nano catalyst, and .conducte(‘i THPRN/DPRN catalyst-reactions using that catalyst
(Scheme 2.15). The mag11et1cally retrievable catalyst can be reused up to ten times without
any reactivation operation.

ide catalyst

-propylsulfamic acid

MNP-PSA
Dry CH,Cl,, RT
R-OH = Y - Ch R /\\/\/l
MNP-psa 0~ o
MeOH, RT THP ether
SCHEME 2.15 THPRN/DPRN reaction using MNP-pS A

2.2 Heterogeneous catalysis in Henry reaction
2.2.1 Introduction to Henry reaction

The formation of C-C bond betw

een tw oL

the elaboration of a carbon framework ‘;;‘:10;;\:11;1';:2?‘33 s of baramount significance for
numerous examples, Henry reaction is an illustrigyg C-rée\ger orgam? compounds. Out of
discovery in 1895.55 The classical Henry reaCti()n il'\Vo]v ond formm
and a nucleophile (nitronate anion) generated by nitro lke
to the concomitant generati a

S Coupling of 5
on of a bifunctiop ane bearing o
similarity with Aldol react al mole

\  @-hydrogen which leads
ion, this trans Formagi Cule calleq nitroalcohol.® Dye to the
the domain of synthet . . On 1s algg known ag Nj ;
ynthetic organic chemlstry, Henry o Nitroa] S Nitroaldol reaction. In
Itroaldo

| reaction Occupies a

g reaction since its
carbonyl compound
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distinctive place owing to the synthetically important nitroalcohol product.’” Nitroalcohols
are versatile synthetic precursor to form multiplicity of valuable organic compounds.
Manipulation of the nitro and hydroxy group of nitroalcohol to rather complex
functionalities results many pharmaceutically important molecules like B-aminoalcohol, 2-

nitroketone, a-hydroxycarboxylic acid etc.%%¢

The major challenge of Henry reaction procedure is the multiple number of possible
side-reactions which sometimes results in less selectivity of the protocol. The nitroalcohol
products, specially the products generated from aromatic aldehydes, are prone to undergo
dehydration often giving B-nitrostyrene as side-product. In addition to that, the starting
aldehyde compounds may follow Aldol, Cannizaro or Michael reaction routes to give
respective products.é"‘c’2 Diverse catalytic systems, both homogeneous and heterogeneous,
have been reported till date to tackle with this challenge and deliver an efficient as well as
selective protocol to synthesize nitroalcohols. Sharma er al.*® recently reviewed in an article
that the selectivity of Henry product is catalyst and substiuent-dependent for heterogeneous
base-catalyzed reaction. Whereas Choudhury ef al.* noticed that the basicity of the catalyst
system and reaction system is crucial to achieve maximum yield of Henry product. Therefore
designing a suitable, efficient, selective and environmentally benign heterogeneous catalyst
for the above organic transformation is of utmost concern. The environment-friendly and
green nature of the prospective catalysts will be of utmost significance because Henry

reaction is itself a vital example of best atom economy.
2.2.2 Application of polymer-based catalysts in Henry reaction

Various ion-exchange resins and polymer-supported catalysts have been proved to be
successfully catalyze Henry reaction to form nitroalcohols. Balini et al.%> pioneered the use
of Amberlyst-21 as a superior heterogeneous catalyst during the synthesis of nitroalcohols
with or without solvent. Later in 2015, Lodh er al.>® showed that the anion exchange resin
Ambersep® 900 OH can be useful as a heterogeneous catalyst in Henry reaction (Scheme
2.16). The protocol resulted average to good yield (72-91%) of respective nitroalcohols.
After the reaction the catalyst could be reused upto 3 times.

o OH

H , crNo Ambersep® 900 OH ©/QN02
-2 Solvent-free, RT

SCHEME 2.16 Ambersep® 900 catalyzed Henry reaction

Recently in 2017, Gupta ef al.® have synthesized a robust two dimensional Zn(II)-
coordination polymer having 5-(benzylamino)isophthalic acid (HzL) as linker which finds
application in catalytic Henry reaction (Scheme 2.17). They checked different solvent-
system for the reaction but solvent-free condition gave best result at optimized temperature

70°C.

OH

0]
H zn(ncP NO,
+ CHsNO; Solvent-free, 700C

SCHEME 2.17 2-D Zn(I1)-coordination polymer catalyzed Henry reaction

Das et al.’® and Rokhum et al.®' reported several polymer-supported catalyst which
were found to efficiently catalyze Henry reaction for selective synthesis of nitroalcohols. In
the report by Rokhum e? al8' in 2012, an in situ generated ethyl acrylate conjugated

PDPP-EA) polymer generated from the reaction of ethyl

polystyryldiphenylphosphine ( et ; )
acrylate and polystyryl-diphenylphosphine was utilized for the synthesis of Henry reaction.
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SCHEME 2.18 Polymer-bound DMAP catalyzed Henry reaction
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SCHEME 2.19 KF/AlLLQ, catalyzed Henry re
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Q OH

H Ba/ZrO, NO,
+ CH3N02 L
Ethanol, 40°C

SCHEME 2.21 Ba/ZrO; catalyzed Henry reaction

Sachdev et al.”?, on the other hand, presented a silica—polymer nanocomposites
functionalized with piperazine SBA-Piperazine Catalyst or (SBA/PP) which was used to
conduct nitroalcohol synthesis. The reaction procedure resulted best yield when conducted

under solvent-free condition at 65°C (Scheme 2.22).
o OH
SBA/PP
Solvent-free, 65°C

NO,

H
+ CH3NO;

SCHEME 2.22 SBA/PP catalyzed Henry reaction

Neelakandeswari e al.” studied the application of a nickel hydroxyapatite
nanocomposite (Ni-HAp) in microwave-assisted Henry reaction. However unlike other
protocols, the major product in this reaction appeared as nitrostyrenes with good yield
(47.2%- 97.1%). Assessing the utility of nitrostyrene, this reaction can be a green synthetic

route to synthesize nitrostyrene compounds (Scheme 2.23).

o)

H Ni-HAp X NO,
+ CH3NO >
32 Microwave

SCHEME 2.23 Ni-HAp catalyzed Henry reaction

Kiasat ef al.™ in 2015 designed a Fe3O4 based magnetic nanoparticle which worked
transfer catalyst in water when employed to Henry reaction (Scheme 2.24). The
4-copoly[(styrene/acrylic acid)/grafted ethylene oxide (nano-Fe3Os4-PS-
fter completion of the reaction the catalyst was separated using
used up to 5" catalytic run without much depression in its activity.

as a phase-
catalyst was Fe3O
Co-[PAA-g-PEG]). A
external magnet and re

OH

o)
H nano-Fe;04-PS-Co-[PAA-g-PEG] NO,
+ CHaNO2 H,O, Reflux, 25 mints.

SCHEME 2.24 Fe;04-PS-Co-[PAA-g-PEG] catalyzed Henry reaction

2.2.5 Metal-Organic Framework catalyst in Henry reaction

Lately, a new class of heterogeneous catalysts has appearec! as a_promising material namely
metal-organic framework which find tremendous applications in variety of fields. Recent
reports of catalytic Henry reactions involve number of MOF catalysts to give selective

nitroalcohol products.
175 developed three Zn(II) based MOF by reacting with different

Karmakar et a : . '
functional groups including 2.-acetamidoterephthalic acid (Framework 1), 2-
propionamidoterephthalic acid (Framework 2) and 2-benzamidoterephthalic acid

£ the all three novel compounds, framework 1 showed highest

(Framework 3). Out 0 . . . )
efficiency in ca)talyzing Henry reaction producing B-nitroalcohols in high yields (up to 95%)

(Scheme 2.25).
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H [Zn(L1)2(4,4™bipyridine)(H,0)(DMF)],, NO,
* CHaNO, MeOH, 70° C

SCHEME 2.25 Zn(I]) based MOF catalyzed Henry reaction
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SCHEME 2.26 3-D Cu(Il) based MOF catal
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i OH

H Mg-Al LDH NO,
+ CH3NO, -
Solvent-free, RT
1:5 ratio

SCHEME 2.28 Mg-Al HT LDH catalyzed Henry reaction

Another important category of heterogeneous catalysts popular in modemn catalysis
reactions are layered double hydroxides (LDH). Assessing the environmental threats and
need for eco-friendly synthetic catalysts, Choudhury er al.* group designed a modified Mg-
Al hydrotalcite material as an LDH catalyst to conduct Henry reaction (Scheme 2.28).
Recently Abdellattif #' and his co-authors synthesized three different types of LDH catalysts
based on Cu, Mg and Al by varying their proportion. Cu:Mg:Al hydrotalcite (HT) shown
advantageous effects on catalysis of Henry reaction compared to Cu:Al HT materials under

microwave irradiation.

Some important metal complexes have also been studied extensively as
heterogeneous catalysts for the useful transformation of aldehyde to nitroalcohols. In this
context, copper complexes are the most studied and effective catalysts in Henry reaction to

produce B-nitroalcohols.®**?

2.3 Efforts towards a greener Wittig reaction

2.3.1 General introduction to Wittig reaction

fins by the formation of C=C has always been a corner stone in synthetic
y. The ‘essential and ubiquitous’ nature of C-C double bond makes olefin
ound or precursor for many synthetic procedures. But it was indeed
rform olefination of carbonyl group until 1953, when George Wittig
and Geissler®®, the German chemists, first published a unique methodology for that valuable
transformation. The reaction, known as Wittig reaction, involves formation of an alkene by
the addition of alkylidinephosphorane/phosphonium yl}de (or Wittig reagent) and an
aldehyde or ketone by the consequent elimination of triphenylphosphine oxide (Scheme

the chemical reaction sooner got wide popularity

2.29). Due to the generality and efficacy,
as a regioselective and chemoselective procedure to prepare olefins, and was even employed

Synthesis of ole
organic chemistr
products targeted comp
a challenging task to pe

in industrial scale.®**’
® o Base ®
PhaP + RCH X — PhgP-CHRX —————> PhsP-CH-R'
Phosphonium salt Phosphorous Ylide
Wittig reaction
Ph;;%)-chz-R' + o:C:R1 ~ i;?C:CHR"‘ PhsP=0
Rz Alkene

SCHEME 2.29 Wittig reaction

However, the classical protocol has several shortcomings .in view of the
environmental and economic concern which forbids it.to be used exgsenswely ip industrial
scale. The major limitations includes its tedi.ous multistep .protocol along with the less
stereo-control of the products.?** Another serious challenge is the low atom economy of the

on of triphenylphosphine oxide as waste product, often

reaction protocol due to the formati : :
difficult to separate."' Also, use of solution phase reactions of multistep procedure creates
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Microwave, 5-6 min
Silica gel

Ar—CHOH + Ph;P=CHCOOCH,CHj3 » Ar—C=CHCOOCH,CH, + PhsP=0
N PALRV] 3

Stable ylide

SCHEME 2.32 First Microwave- assisted Wittig reaction

In the year 2001, Westman er al.®® investigated a one-pot Wittig reaction using
polymer-bound triphenylphosphine under microwave irradiation (Scheme 2.33). Production
of olefins were obtained by using variety of aldehyde and organic halides and in-situ

formation of solid-supported ylide.

Q)PP R

R

X
R,—CHO + (
R4 Microwave, K,CO3;, MeOH

SCHEME 2.33 Microwave- assisted one-pot Wittig reaction

Recently Wemer et al.’' in 2014 forwarded for the first time a microwave-assisted
catalytic Wittig reaction using commercially available tributylphosphane oxide as a pre-
catalyst. On the other hand, Frattini ef al.'®® investigated a kinetic study of Microwave-
assisted Wittig reaction carried out using aromatic aldehydes and stabilized ylides.

2.3.4 Oxidative Wittig reaction and heterogeneous catalysis

Lately, a number of publications emerged in literature reporting heterogeneous catalysis
engrossed in Oxidation-Wittig reaction where starting product is alcohol and in-situ

oxidation of alcohols to aldehyde takes place.

In 2008, Lee et al.'® developed a metal nanocatalyst where Ru nanoparticles are
porous structure of oxyhydroxides and utilized this catalyst for the
production of olefins by Oxidation-Wittig reactions of alcohols via in-situ aerobic oxidation
of alcohols to aldehyde (Scheme 2.34). Both aliphatic and benzylic alcohols are applicable
to the procedure and apart from oxygen, no other additives are required.

O

. RumoOH)

entrapped in the

R-OH

SCHEME 2.34 Rw/AIO(OH) catalyzed Oxidation-Wittig reaction

Alonso et al.'® demonstrated Oxidation-Wittig reactions of primary alcohols using
Ni nanoparticles (Scheme 2.35). The reaction was particularly effective in case of benzyl
alcohol and semi-stabilized benzyl ylides whereas limited scope was observed for aliphatic

alcohol and non-stabilized alcohols.
NiNPs

Ph THF, reflux

R/\oH + Ph3pq R/\v" Ph
SCHEME 2.35 NiNPs catalyzed Oxidation-Wittig reaction

thesized mesoporous silica supported Ru nanoparticles

Carillo et al.'® in 2014 syn :
tion of alcohols as heterogeneous catalysts

which finds application in oxidative Wittig reac
(Scheme 2.36).
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SCHEME 2.36 Ru@SiO;, catalyzed Oxidation
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Earlier homogeneous alkali solutions, NaOH or KOH solutions were used as
catalysts for this conversion due to their miscibility and high activity. But these aqueous
alkali solutions when react with the triglyceride molecules often leads to saponification
reaction as side-reaction. The soap formed in the reaction not only decreases the FAME yield
but also inhibits the separation of glycerol from product mixture.''™!'” In view of this,
heterogeneous catalysts have been a preferred catalyst for biodiesel production from recent
past decades and have also been applied in industrial level.'?® Since catalysts take part a
significant role in the processing of biodiesel and also substantially contribute to the
production cost, thesaurus of heterogeneous catalysts are being investigated for an efficient,
economic and environment-friendly transesterification reaction. Both acid and base catalysts
have found effective in catalyzing transesterification reaction, although base catalysts are far
more active (4000 times!) than the acid catalysts.'?' Diverse range of heterogeneous catalysts
including metal oxides, carbonates, zeolites, polymers, double layered halides (LDH) etc.
have found application in the biodiesel production reaction.'”*'** As a special mention,
biowaste derived catalysts are of stimulating interest due to their abundance and green
nature. So here, transesterification reaction catalyzed by biowaste-derived catalysts will only

be discussed for brevity purpose.
2.4.2 Waste-shell derived biowaste catalysts in transesterification

Shells of eggs, snails, mollusks etc. are very rich in calcium, due to which calcination or
combustion of these shells leads to the formation of calcium oxide (CaO). The basicity of
calcium oxide makes these calcined shells as efficient and low-cost heterogeneous catalysts

in transesterification reaction of vegetables oils, 25?7

Nakatani ef al.'?® performed the synthesis of FAME by transesterification of soybean
oil at 65°C using combusted oyster shells (25 wt%) (Scheme 2.38). It was optimized that
oyster shells combusted above the temperature of 700°C, are converted to CaO and thereby
attain catalytic ability for biodiesel synthesis. Since in east Asian countries like Japan and
Korea, oyster farming is a common practice so a large amount of shells are thrown as
garbage. Valorization of these oyster shell as catalyst in biodiesel industries can not only
lower the cost of catalyst production but also eliminate the problem of shell-waste disposal

problem.
o o]
)L 3 R1 OMe
1 0" R ) oH Combusted Oyster shell ,?l\ H2?_OH
R\I]/O\/K/OYR + Me 65°C, 5 hrs © R2 oOMe * HC~OH
H,C-OH
O soybean oil o 3J\ ’
(Triglycerides) R* OMe Glycerol
FAME

SCHEME 2.38 Transesterification reaction using combusted oyster shells as catalyst

Wei et al.'2® utilized calcined egg shells for biodiesel production from soybean oil
(Scheme 2.39). The yield of FAME was obtained as maximum when the egg shells were
calcined above 800°C. The optimized condition for the reaction was achieved with oil:
methanol ratio as 1:9, 3% egg shell calcined at 1000°C and reaction temperature as 65°C

which resulted 95% yield of biodiesel product after 3 hours of stirring.
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SCHEME 2.41 Transesterification reaction using tucuma peel ash as catalyst

In the year 2018, Pathak er al.'*® recently reported an efficient and environment-
friendly method of biodiesel synthesis from soybean oil using Musa acuminata banana peel
ash as a heterogeneous catalyst (Scheme 2.42). Interestingly, the reaction was conducted at
room temperature using 0.7 wt% of combusted banana peel ash and 1:6 oil to methanol ratio.
After 4 hours of reaction it resulted maximum yield of 98.95%.

O 0]
O/U\ R® Musa acuminata peel ash R1JOLOMe H,C-OH
R‘\n/o\)\/o\n/ R2 + MeOH - J\ome . Ho-on
0 o) Q H,C-OH
Soybean oil 3 JLOM
(Triglycerides) R e Glycerol
FAME

SCHEME 2.42 Transesterification reaction using Musa acuminata banana peel ash catalyst

Chen et al.'¥" synthesized a Li-modified biomass based catalyst using rice husk ash
activated by LiCOs which act as a powerful catalyst in transesterification reaction. While Li

of al. 138 used a K2COs impregnated camphor tree ash as catalyst for FAME synthesis.

2.4.4 Biochar based heterogeneous catalysts in transesterification reaction

Biochar is a carbon-rich material produced as a result of pyrolysis of biomass which find
wide range of applications in various fields. The inherent properties of this low-cost
substances viz. large surface area, porous morphology, large pore volume, stability, intrinsic
surface functionality etc. makes biochar an attractive class of heterogeneous catalyst or
catalyst precursor.'>* A number of biochar products have been investigated as heterogeneous
catalysts or catalyst support in biodiesel synthesis.

Mckay et al.'®" reported a palm kernel-shell derived biochar as solid ash
heterogeneous catalyst in the synthesis of biodiesel from sunflower oil. A yield of 99%

FAME was achieved by the transesterification reaction using 3% catalyst loading and 1:9
oil to methanol ratio at 65°C. Li ef al.'" performed simultaneous transesterification of

triglycerides and esterification of free fatty acids of cooking oil using sulfonated rice husk

biochar.

2.5 Heterogeneous catalysis in solketal synthesis

2.5.1 Glycerol acetalization and synthesis of solketal

In recent decades, biodiesel industries all over the world have witnessed revolutionary
growth owing to the diminishing fossil fuel reserves.'2!%* Since glycerol is a major by-
product in biodiesel synthesis transesterification reaction, so there is a large out flux of
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Glycerol can be profitably converted to ization proccess
oxidation and most importantly acet

therification alization. Acetalizlzitionlof1
. . ethen n . . . ' ost)
estenﬁc\ai,lvoi:; acetone leads to the formation of 2,2-d1methyl-133-d10xolane(l 4 metmmOnly
%}ycefoembered ring with one unprotected hydroxy group. This c.:o.mpoun 18 dc?o o

nowin as solketal and have been extensively used as fuel-additive, suspending li tai
kn:fw;ant plasticizer and flavoring agent.''#8 It has been evidenced that applying sod ;ow
S‘; vthic]e’ fuel-additive results substantial improvement in the octane nurpbg’ and cp\ e
;roperties of fuel as well as potential reduction of particulate emission during
combustion.' 314

Heterogeneous catalysis finds significant applications in solketal synthesis which
comprise of ion exchange resins, zeolites, mixed oxides, nanocatalysts etc.

2.5.2 Ton-exchange resins in the synthesis of solketal
Nanda ef al.'*S reported Amberlyst-35 catalyzed solketal synthesis and its kinetic study
where acetalization reaction was performed with glycerol and acetone using eth
solvent

anol as
(Scheme 2.43). Silva et al 50 yused Amberlyst-36 for the same conversion.

Amberlyst- O)(
H H t yst-35

> O
Ethanol R\
Glycerol Acetone

OH
Sol-ketal
(4-hydroxymethyl-2,2-

dimethyl-1,3-dioxolane)
SCHEME 2.43 Solketal synthesis using Amberlyst-35 ag catalyst

Shirani et al.'*' reported acetalization reaction of glycerol with acetone On
continuous reactor using Purolite® PD206 as heterogeneous catalyst (Scheme 2.44). The
reaction was conducted at temperature 20°C, pressure 120 bar, glycerol to acetone ratio 1:5»
feed flow rate 0.1 mL-min"' and catalyst amount 0.77 g to afford 95% yield of solketal.

™ o Purolite® PD206 Ok

O
ZOOC’ 120 bar B \\&
Glycerol Acetone

OH
Sol-ketal

(4-hydroxymethyl-2,2-

dimethyl-1 .3-dioxolane)
SCHEME 2.44 Solketal synthesis using Purolite® PD206
Recently in 2018, Laskar et g].!52

as catalyst
synthesized a me

: soporous Phenolsulfonic acid
oic;et;: method of solketal synthesis using that
selectivity at 60°C and using 15 ghycerot 1 acet(())l:\res to attain 97% conversion and 1000/?1
cycle without any reactivation needed before reuse revio- The catalyst was reused up to 4
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Mesoporous phenolsulfonic
acid-formaldehyde

- o)
OH o) polymeric acid catalyst o]
+ L .
HO\)\/OH PN 60°C, 4 hrs ‘ l\<\
~OH
| Acet Sol-ketal
Glycerol cetone (4-hydroxymethyl-2,2-

dimethyl-1,3-dioxolane)

\

SCHEME 2.45 Solketal synthesis using mesoporous Phenolsulfonic acid- formaldehyde resin as catalyst

2.5.3 Zeolites in the synthesis of solketal

Multiple number of zeolites have been used in glycerol acetalization reaction. Manjunathan
et al."? investigated several zeolite type solid acid catalysts where H-Beta (with lower
crystalline size) catalyzed synthesis of solketal by glycerol acetalization gave best result with

86% conversion and 98% selectivity (Scheme 2.46).
o

OH o) H- beta zeolite . 0O
+
HO\)\/OH /U\ RT on

Sol-ketal
Glycerol Acetone (4-hydroxymethyl-2,2-
dimethyl-1,3-dioxolane)

SCHEME 2.46 Solketal synthesis using H-beta zeolite as catalyst.

In 2017, Priya et al.'® demonstrated the use of various transition metal promoted
mordenite zeolite based catalysts in acetalization reaction of glycerol (Scheme 2.47). The
Cu-Mordenite catalyst resulted maximum conversion of 95% with 98% selectivity under

o)(
OH 0o Cu-Mordenite o
HO\)\/OH * /U\ Microwave OH

Sol-ketal

Glycerol Acetone (4-hydroxymethyi-2,2-
dimethyl-1,3-dioxolane)

microwave-assisted reacton.

SCHEME 2.47 Solketal synthesis using Cu-Mordenite zeolite as catalyst.

2.5.4 Metal oxides in the synthesis of solketal

1154 various SnO2 based catalyst for utilization in glycerol
orted S042/Sn02 as the most effective catalyst for the
nO, and MoO3/Sn0O: (Scheme 2.48). They anticipated that
tributed to the increased acidic and ample superacidic

o

OH o) S0,%/Sn0, o
HO\A/OH + /LK RT, Solvent-free on

Sol-ketal
Glycerol Acetone (4-hydroxymethyi-2,2-
dimethyl-1,3-dioxolane)

Mallesham ef a
acetalization reaction and rep
conversion compared to WO3/S
the higher activity of the former at

sites.

SCHEME 2.48 Solketal synthesis using SO4*/Sn0; as catalyst.
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1 N (N - n ) . ] ]
; 0 C m .‘l 9 .
Ok

. L 0]
OH o Niobia .
°C, Solvent-free
no A_on * J_ 7o, on

So!-ketalh 122

| Acetone (4-hydroxymethyl-2,2-
Glyoero dimethyl-1,3-dioxolane)
SCHEME 2.49 Solketal synthesis using Niobia as catalyst.

2.6 Conclusion

After the brief assessmen. of literature on t}}e app}ication of var}qus heterogeneous catal);ssz
in several important organic transfonnatl‘ons, it can be ant1c1pat.ed that heterog’enethis
catalysis is a leading catalytic techniqug in present era of catglytlc resc.earc}%. Wh.lle' i
technique being already used in industrial level in some special domains like biodies

synthesis, several fields are yet to implement in large-scale production. Therefore this 1S
need of the hour to design some efficient and environment-friendl

pathway to perform significant chemical reactions like C
protection deprotection strategies and industrially relevant bi
valorization etc. For this, needful characterization of cat
elucidate the properties of the catalytic compounds. Reusabi
which must be examined to learn the green character of ac

y heterogeneous catalytic
-C bond forming reactions,
odiesel synthesis and glycerol
alysts is utmost necessary to
lity is another important criteria

atalyst under investigation.
In consideration of the survey,

the experimental studies of synthesis, characterization
and applications of a few selected het

erogeneous catalysts have been
We believe that, in context of the p

. presented in this thesis.
resent catalytic research, the fin
be helpful in laboratory or industrial applicati

dings of this thesis can
ons.
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CHAPTER

3

Magnetic FesOs@silica sulfuric acid nanoparticles
promoted tetrahydropyranylation/depyranylation
of alcohols and acetalization of glycerol under

solvent -free conditions

3.1 Introduction
3.1.1 Functionalized silica-coated magnetite nanoparticles as catalysts

Taking into account the advantages of heterogeneous catalysts over homogeneous catalysts
in terms of separation and recoverability, plethora of effective heterogeneous catalysts have
been reported in recent years. However the serious disadvantage of heterogeneous catalyst
is that the efficiency of the catalyst gets restricted due to limited surface area.' This drawback
can be overcome by nanocatalyst support due to its “plenty of room at the bottom™ nature.
Owing to the tiny size, the exposed surface area of nanoparticles are very high which leads
to dramatic rise in their catalytic activity. The high accessibility of nanocatalysts with

reactant molecules is the reason behind they are considered as the ‘bridge between
heterogeneous and homogenous catalysts’.?”

In recent decades magnetic nanoparticles (MNPs) are gaining enormous attention
due to the technical simplicity of catalyst separation process. These catalysts can be easily
separated from reaction medium by external magnet preventing the use of sophisticated
techniques like chromatography or high-speed centrifugation, reducing the amount of
product-loss, enhancing recyclability and thereby ameliorating the overall synthetic
process.>® Magnetic Fe3;O4 has been investigated the most due to its potential magnetic
saturation value, simple synthetic procedure and their biocompatible nature. However, bare
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iron oxide nanoparticles have several |
leading to immediate aggregatim} into 1
and thereby reduction of magnetic satu
forming a silica coating over the MNP

imitations which includes high chemica\. reactivity
arge clusters, rapid exothermic reaction with oxygen

ration and dispersibility.'*'? Surface modification by
surface can make it stable, inert, non

A bird-eye-view of literature com

prising silica-coated functionalized Fe3O4.MNPS
suggests that a good number of catalysts have been developed by anchoring di

functional species like —SOsH, -NH,, Schiff base, polymers etc, onto the surface silanf)]
groups of Fe;04@Si0; particles, 13 These core shell magnetite nanocatalysts are used in

of synthetic app:.cations. Sulfuric acid is one of the most ind
though lack of recoverability leads to

annual consumption of
homogeneous acid ‘as an unrecyclable catalyst®,16 Heterogen
magnetic nanocatalyst-surface not only makes possible easy re
by magnetic Separation but also minimizes product

Dam and his
one-pot_Bigipelli omponent coupling reaction (MCR) to
synthesize dlhydropyrimidine derivatives, The reaction was performed under solvent-free
condition at 60 °C.
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SCHEME 3.3 Fe;O4@SiO>@NH?2 catalyzed chromeno[2,3-b]pyridine derivatives synthesis.

3.1.2 Tetrahydropyranylation and depyranylation of hydroxyl group

During the synthesis of an organic compound, the protection (and deprotection) of the free
hydroxyl group in a multifunctional alcohol substrate or intermediate is one of the most
frequently used strategies.”*?' For this type of functional manipulation, etherification of the
hydroxyl group using 3,4-dihydro-2H-pyran (DHP) is recognized as the most popular and
easy protocol. This is because of its several attractive advantages over other protecting
reagents, which include ease of its preparation, stability of the corresponding
tetrahydropyranyl ethers towards various reaction conditions and use of reagents such as
strong bases, hydrides, Grignard reagents and other organometallic reagents.”*** Moreover,

THP ethers can easily be converted to various derivatives, such as sulfides, halides?,

esters2®, cyanides and carbonyl compounds®’ employing specific methods, which makes

them ideal protecting reagents for tetrahydropyranylation. Enumerable catalysts including
both homogeneous and heterogeneous catalysts have been reported to date, which have been

proposed to catalyze tetrahydropyranylation of free hydroxyl groups.

In this chapter, we report application of core-shell structured Fe;Os@silica sulfonic
acid (Fe;04@Si02@SO0sH or FSS) catalyst for tetrahydropyranylation/depyranylation of
alcohols under solvent-free conditions. The solvent-free protocol makes it free from the
hazardous effects of organic toxic solvents, offering a green and eco-friendly approach. Also
due to the magnetic retrievability of the catalysts, the protected alcohol can be easily isolated

to be used for further synthetic step.

3.1.3 Sol-ketal synthesis by glycerol acetalization

tion regarding diminishing fossil fuels and their environmental
has been witnessing a rapid development.**° Consequently,
f glycerol which is obtained as an unavoidable by-product
of transesterification process of biodiesel s.ynt.hesis.z"'32 Approximately, one tenth of
glycerol is produced from every gallon of biodiesel produced while i',’dusgial worth of
glycerol (after refining) is far limited compared to its growing production.’*3 The large
waste stream of glycerol is contributing to s1gn.1ﬁc3ant drop in its market-value and thereby
putting question mark to the sustainability of biodiesel industry. In this context, innovative
practices for valorization of glycerol into useful products seeks utmost concern.3436-37

A lot of pathways are devoted to the corl‘vzersion qf glycerol involving oxidation,
hydrogenation, esterification, etherification etc.”*** Acetalization of glycerol with acetone
can be a lucrative way for utilization of surplus .gly_cerol, giving a five-membered ring
molecule with one hydroxyl group unprotected, \{vhlch is commpnly known as solketal (2,2-
dimethyl-l,3-dioxolane—4-methanol). Sol-ketal is a f:ommerc1ally valuable product used
extensively as fuel additive because it can potentially improve octane number and cold flow
properties of transportation fuels and also serve to reduce the particulate emission during
fuel combustion and gum formation.?>®# Apart from the§e beneﬁtg, solketals ﬁpds
applications as versatile solvent, surfactant, plasticizer, suspending agents in ph_armaceutlcal
industry and also as flavoring agents.*>8 So it can be speculated that synthesis of solketal
can be a profitable valorization of glycerol generated as by-product from biodiesel synthesis

and boost the turnover of biodiesel industries.

Traditionally homogeneous mineral acid catalysts viz. H2SOs, HCI and p-
toluenesulfonic acid are employed for acetalization of glycerol. Howgver the fundamental
difficulties associated with homogeneous catalysts during separation and purification
processes restrict their widespread use. Therefore several heterogeneous catalysts are

Owing to the alarming situa
impacts, biodiesel industry
there is a huge surplus outflow o
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: 34 ived
. e eod9 s”7, mixeé
introduced to mitigate those problems that include zeolites*’, ion exchange resin

i 52 i utstanding properties of
oxides®, heteropolyacids® and nanocatalysts.’* Assessing the o g prop

. . . S
magnetic nanocatalysts, we aimed to find application of Fe304@S}Oz@803H (FSS) Ml‘i)ir
in ;g}?e catalytic acetalization of glycerol with acetone to synthesize sol-ketal. As per

knowledge and survey, this the first report of utilizing magnetic nanocatalysts for sol-ketal
synthesis.

The reaction of glycerol acetalization was carried out under ultrasonic irradiation,
which provides a sustainable route to synthesize solketal. Ultrasonication is a comerstortlle
among all green synthetic techniques where sound energy propagates throughout the
reaction media, resulting in agitation of reactant molecule. When the reaction system 18
irradiated with ultrasound wave, the alternate rarefication and compression phenomena of
sound wave leads to the formation of micro-bubbles in the liquid followed by their violent
collapse (cavitation) during compression. This results in localized high temperature and
pressure region inside the reaction media and helps to overcome the activation energy of the
reaction.’** The micro-scz” cavitation combined with the intensified mixing of reactants

are known to be the reasun behind the accelerated reaction rate of ultrasound-assiste
synthetic processes. Citing the advantages allied with ultr

oS . : asonicated reactions, such 25
accelerated kinetics (energy saving), improved selectivity (minimized waste), better yield
(high efficiency), little instrumental requirement (economic), etc., Jean-Louis Luche’’ linked
sonochemistry with green chemistry in 1999 (“green chemistry: the sonoch emical
approach”) just after Anastas and Warner® postulated the 12 een chemistry principlés
(1998).%7 &r Ty p

The advantages of magnetic nano-catalyzed reactions, followed by our interest it
sonochemistry encouraged us to design a facile, ultrasound-promoted cataly ic pathway fof
solketal synthesis using magnetic silica supported acid funct; l.y‘nc path e
nanoparticles. While magnetic catalyst promotes hurdle- conafized iron o
way, application of ultrasonication techn,

free catalyst separati ther
arati he o
! ology to the 4 Yy P on,ont
rate by means of improved mixin
accumulation of b

and acetone and pr 1
. eventing rap
e ofmolecu¥e§rﬁ::§; Water molecules on the catalyst surface It)hrough c%onstan
gl \ » IeNCe preventing catalyst deactivation Theref . finds
several attractive features, like mild reaction conditiong (Short're ore ore, the reaction nuc
separation of catalysts, 100% selectivity, efficient product ; action time), easy magne
recyclability. uct isolation, and good catalys
3.2 Experimental
In this section, the details of chemicals and

. re

methodologies of products, information of vﬁf&i’ Synthetic

.~ Procedure of catalyst, reactio?
used during characterization process are discussed bi?:}%’tlcal and Spectroscopic techniques
3.2.1 Materials and methods g
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individual particles over a copper grid. Powder X-ray diffraction (XRD) patterns were
obtained on an X'Pert Pro PANalytical diffractometer under the following conditions: K-
Alpha 1 wavelength (A= 1.54056 A). K-Alpha 2 wavelength (A= 1.54439 A), generator
voltage of 40 kV, a tube current of 35 mA and the count time of 0.5 s per 0.02° in the range
of 5°-90° with a copper anode. FT-IR spectra were recorded on a Nicolet 6700, Nicolet
Continuum FTIR Microscope. NMR spectra were recorded on Bruker Avance I1, 400 MHz.
Magnetic measurement was carried out on a Lakeshore VSM 7410 magnetometer. The
sonochemical reactions were carried out in a PCi Analytics (3.5L100H/9TC) ultrasonic bath
(sonicator) of operating frequency 33+3 KHz. GC of the synthesized product was recorded
on an Agilent 7890 gas chromatograph which is fitted with head space injector mode, a
CPSIL 8CB capillary column (30 m x 0.25 mm x 0.25 pm) and GC FID detector. The initial
oven temperature was 55 °C and it was increased up to a final temperature of 230 °C with a
rate of 10 °C min-1. The temperature of the detector and the injector were 300 °C and 250
°C, respectively. For quantitative analysis of the products, biphenyl was used as an internal
standard. GC-MS analysis of the isolated product was taken on Jeol AccuTOF GCV mass-
spectrometer which is coupled with the Gas chomatogrph instrument. NMR spectra were

recorded on Bruker Avance II, 400 MHz.
3.2.2 Preparation of the catalyst

Preparation of iron oxide magnetic nanoparticles FesO4 (F) MNPs: Magnetic
nanoparticles were synthesized according to reported procedure.'®>"%® Co-precipitation of
Fe(11) and Fe(I1l) was carried out by dissolving first FeSO4.7H>0 (1 mmol) and FeCl;.6H20
(2 mmol) in deionized water under nitrogen atmosphere at 90°C. Ammonium hydroxide
solution was added to the solution with vigorous mechanical stirring. The reaction was
carried out for 60 min in N2 atmosphere until the color of the bulk solution turned to black.
External magnet was used to separate out the resulting black MNPs, washed that 3 times
with deionized water and then dried under vacuum at 60°C for 12h.

Preparation of silica coating of iron oxide magnetic nanoparticles, Fe3Q4@SiO: (FS):
The silica coating of Fe304 MNPs was carried out by using a sol-gel method (Stober method)
that involves hydrolysis of TEOS on the surface of iron oxide nanospheres. For this, Fe3O4
particles were dispersed in a mixture of ethanol, deionized water and TEOS followed by the
addition of 10% NaOH solution. The solution was stirred in a magnetic stirrer for about 1 hr
at room temperature. Then the product was isolated by an external magnet and was washed
several times with deionized water and ethanol and dried at 80°C for 10 hr. Thickness of the
coated silica can be controlled by tuning experimental parameters.

Preparation of SO3H functionalized silica-coated iron oxide magnetic nanoparticles;
Fe3;04@SiO2:@SOsH (FSS)

To immobilize the SO3H functional group onto the surface of Fe;04@SiO2 nanoparticles, a
suction flask was equipped with a constant pressure dropping funnel. The gas outlet was
connected to a vacuum system through an absorbing solution of alkali trap for conducting
HC] gas. Fe304@Si02 was dispersed into the flask containing dry DCM. Chlorosulfonic acid
(CISO3H) was then added drop wise to the mixture of Fe;04@SiO2 and DCM in a cooled
ice-bath over a period of 30 minutes at room temperature. HCI gas was evolved from the
reaction vessel immediately. After completion of the addition, the mixture was kept for
stirring and occasionally shaking for 3 hrs while the residual HCl was eliminated by suction.
Then the Fe;Oa4@silica sulfonic acid (FSS MNPs) were separated from the reaction mixture
by an external magnet and washed several times with DCM. Finally FesO4@silica sulfonic

acid was dried under vacuum at 60°C for 24 hr.
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mol of solketal formed

Solketal Selectivity= x100%

mol of glycerol converted

3.3 Results and discussion

This chapter depicts the detailed characterization of the FSS catalyst using variety of
analytical techniques viz. FT-IR, XRD, TEM-EDX, VSM etc. We demonstrate here the
application of the FSS catalyst for protection (and deprotection) of hydroxyl groups via
tetrahydropyranylation/depyranylation under solvent-free room temperature conditions. Use
of magnetically retrievable nanocatalyst makes the synthetic process operationally simple

and time-efficient.
Also we tried acetalization of glycerol to synthesize industrially important Sol-ketal

(4-hydroxymethyl-2,2-dimethyl-1 ,3-dioxolane) by ultra-sonication using the same catalyst.
As per our knowledge, magnetic nanocatalysts are used for the first time in the synthesis of

sol-ketal.

3.3.1 Characterization of FSS catalyst

Fourier Transform Infrared (FT-IR) Spectroscopy: In order to identify and ascertain the
functionalization of the FSS catalyst, FT-IR analysis of pure Fe3O4, Fe304@SiO: core-shell,
FesOs@silica sulfonic acid (FSS) and that of recovered catalysts were carried out and

respective spectra are shown in Fig. 3.1(a), Fig. 3.1(b) and Fig. 3.1(c).

a) Fe30,4 MNPs
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FIGURE 3.1: FT-IR spectra of a) Fe;O4 MNPs, (b) Fe;04@Si0x, (c) FSS, (d) Recovered FSS

In each spectra of Fig. 3.1, the appearance of absorption peak at around 590-598 cm’
I corresponds to the Fe-O str?tchmg v1brf_;1t10n of the Fe;04 .Mle"s. Ir_1 Fig. 3.1(b), the
prominent band near 1081 cm™' can be ass_lgned to jthe stretching vibration of Si—O bond
which clearly indicates the occurrence of silica coating over the nanoparticle surface. The
successful anchoring of sulfonic acid (-SO3H) moiety is evidenced by the introduction of
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The average diameter of bare magnetite nanoparticles were found to be 19.66 nm from the
histogram, whereas for FSS particles the average diameter was calculated to be 27.34 nm.
The increase in the diameter of FSS can be clearly attributed to the silica shell over the

magnetite nanoparticle surface.
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FIGURE 3.6 Room temperature

magnetization curve of a) Fe3O4 MNPs, (b) Fe;04@Si02, (c) FSS, (d)

Recovered FSS

3.3.2 Protection and Deprotection of alcohols

Tetrahydropyranylation of
In continuation of our ongo

tetrahydropyranylation

within a very short time 0

(1 mmol) and DHP (1 mmol) and 10 mol %
| hr, we observed only slig
d not increase even after stirring for another 1 hr.
caction was completed within the next 1 hr.
to optimize the amount of catalyst. To

atalyst was optimum for the protection of

hr. After stirring for
TLC. Surprisingly, this di

additional DHP (0.2 mmol) and found that the r
this findings, our next obvious target was
20 mol% of the ¢

Inspired by
our satisfaction we found that
alcohols. (Table 3.1, Entry 4).

TABLE 3.1: Optimization of the

Entry
1 5
2 10
3 15
4 20
5 25

“Reaction conditions: Benzyl alco

of various

alcohol and, to our delight; protection of al
£ 1 hour only. First, w
of the nanocata

alcohols:
ing research interest, we applied the synthesized catalyst in

alcohol substituents. Initially we tried it with benzyl
cohol was successful under solvent-free condition
e took equimolar mixture of benzyl alcohol
lyst and stirred the mixture for 1
ht formation of the product as indicated by
Then we added

catalyst”

Catalyst amount (mol %)

hol (1 mmol), D

Time (min) Yield (%)
150 65
120 85
55 90
45 95
45 95

HP (1.2 mmol), room temperature, SolFc
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Encouraged by the result and the advantage of using ma
soluble homogencous catalyst, we carried out th
protected products as described in Scheme 3.5.

- OSOzH
@ OSO,H
. OSO4H

— @ FSS (20 mol%) /( j
SolFe, RT,45min &

@)

gnetic nanocatalyst over
¢ conversion of various alcohols into its

SCHEME 3.5 Tetrahydropyranylation of alcohols using FSS MNP catalyst
TABLE 3.2: Tetrahydropyranylation of alcohols?®

Bty Alcohols Product Time (min) Yield (%)°
. o o -
(jf\oi o 45 95

o &
Me0,©/\0 ° 32 0

= 50

92
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(\)?\;1\1/:}; r:l;:a opftnn.um reaction condltloz? in our hangl we carrigd out the tetral.lydropyranylation
y of primary, secondary, tertiary, benzylic and allylic alcohols which were smoothl
converted to the corresponding desired products in good to excellent yields at r001y
tempt;rature. The results are tabularized in Table 3.2. It was observed that benzylic alcoho]ﬁ
Sl‘lb.Stltuted with electron-donating groups are highly reactive under our reaction condition
giving the corresponding protected alcohols in excellent yields (Table 3.2, Entries 2, 3)
However, reactions of benzyl alcohols substituted with electron-withdrawing groups \;veré
to some extent slower as compared to their electron-donating counterparts (Table 3.2, Entry
5, Although the reaction rates of aliphatic alcohols were lower as compared to bc;nzylic
ones, they were easily converted into their corresponding products in high yields. It was
observed that aliphatic alcohols with longer chain length take more time for completion than
that with smaller chain length (Table 3.2, entries 7, 8, 9). However, secondary and tertiary
ones took longer time for complete conversion (Table 3.2, entries 11, 12). Allyl alcohols
(Table 3.2, entry 13 and 14) were converted into the corresponding protected alcohols

leaving the olefinic bonds intact.

TABLE 3.3 Competitive reactions of different binary mixtures”
Entry Alcohols Products Time (min) % Conversion
OH D 45 95
l
0 5

(0] (0]

OQ 45 100

o = 0
)

94

(0]

PAE RIS

L) 6
c T
ohd ) .

0
f= JAS
DHP (1.2 mmol), Catalyst (20 mol%), Room temperature,

"Reaction condition: Alcohol (1 mmol).
SolFc.

In order to have more insight into the selectivity of our methqd, we studied various
ions between structurally different alcohols in binary mixtures as
Is that benzylic alcohol can be converted into its

3. This study revea : .
{lent selectivity in the presence of aliphatic ones (Table
cohols were converted quantitatively to its
lcohol remained intact (Table 3.3, Entry 2).
red to their aliphatic counterpart giving

3). Similarly, primary alcohol can also

competitive react
shown in Table 3.
protected products with exce _
3.3, Entry 1). Interestingly. benzylic al
protected alcohols, while the secondary a
An allyl alcohol also reacted faster as compa

the allyl product in high yield (Table 3.3, entry

&7



be converted to their corresponding iodide in the

: o~
presence of tertiary ones wit
complete selectivity (Table 3.3, entry 6).

0 Involye first the abstraction
of DHp and t

; fum
hus formation of an oxoniur

en abstractg one elec

ers. The mechanism we]l—established

tron from the nucleophile alcohol
erification of alcoho].

ful eth the regeneration of 1, FSS catalyst
after success et

Deprotection/depyranylation of THp ether:
TABLE 3.4 De

rotection of THp ethers
Alcoholg

25 95
OH
5 2 @ 20 90
— o
5
- .y ) iy 1 Atalyst (3 mol%),), f0om temperature
rotection o P etherg was j ;
We found that e addition of % vestigy(oq by chan..: .
: ethang] serve , oY anging the solvent syste
ethers in Presence of Fgg aS catalyst 4 room ¢ a8 an efficien eprotectip g reagent for THP
alcohols i excellent yiglg of 90.950, “Mperaty
Variations, [t 1S interestin t o
Present sty

showy, T bO Provide the Correspondii‘lg fi
o ote tha € deprotectioy, 1€ 344, Irespectiye of structur?
ithin 3 Min, 10T all th COmMpoungg reported in th?
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/Cj FSS(20mol%) _ R_oH + O

R-0 0 MeOH, R.T., 30 min MeO™ O
(0.5 mL)

Byproduct
SCHEME 3.7 Depyranylation of alcohols using FSS MNP catalyst

Proposed mechanism for the deprotection or depyranylation of THP ether using FSS
catalyst is shown in Scheme 3.7

byproduct

SCHEME 3.8 Proposed mechanism for the deprotection of THP ethers using FSS MNP catalyst.

Recycling of the catalyst

e

Q\ R-OH + |
Q\ 503H
| OSO3H
0803H
100 28% 98% 5%
98 96% 96%
96
e
E 92
§ 90
g a8
o 86
84
82
%0 4th 5th
Run

FIGURE 3.7 Recyclability test of FSS catalyst
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The recyclability of magnetic nanocatalyst was

investigated with consecutive
tetrahydropyranylation reaction using different substrates.

Spectroscopic data of synthesized compounds

2-((4-Methylhenzyl)oxy)-tetrahydro-zH-pyran (Table 3.2, entry 2)

'H-NMR (400 MHz, CDCl;, TMS): 8 7.26 (d, J= 10 He, 2H), 7.17 (4, J= 8Hz, 2H), 4.79-4.71 (m, 2H), 4.48
(d, 1= 15 Hz, 1H), 3.93 (1, J=5 Hz, 1H), 3.57 (1, J=5 Hz,111), 3 36 (8.3H), 1.91-1.54 (m, 6H); *C.NMR (100
MHz, CDCls, TMS): § 137.29, 135.34, 129. 16, 128.09, 97.64, 68.77, 62.17,30.71, 25.64, 21.29. 19 49.

2-(4-Methoxybenzyloxy)-tetrahydro-zH-pyran (Table 3.2, entry 3)
'H-NMR (400 MHz, CDCl,, TMS): 8 7.27(d, J=10
J=15Hz, 1H), 3.89(t, }=5Hz, 1H
CDCl3, TMS): § 159.24, 13

Tetrahydro-2-

Hz, 2H),6.85(d, =10 1, 21 4.66-4.71(m. 2H), 4.42 (d

» 3.74(s, 3H), 3.52(, J=5Hz, 11y, 1.83-1.49(m, 6H); "C.NMR (100 MHZ.
77,129.56. 11381, .68.53. 62,1 35.21,30.70, 25.59. 19 50,

(phenethyloxy)-ZH-pyran (Table 3.2

'H-NMR (400 MHz, CDCl;, T™MS): § 7.26-7.15
3.68(m,1H), 3.60-3.54(m, 1H),
CDCls, TMS): § 139,15, 129.0

s entry 6)

(m, 5H), 456 (t, J=2 Hz, 1H
3.43-3.39(m,1H), 2.88(t, J=9Hz, 2H), 1.79-1 42 (m
3,128.48, 128.29, . 62.01, 36.45 30
2-(2-Ethylhexyloxy)-tetrahydro-zH-pyran (Ta

'H-NMR (400 MHz, CDCl;, TMS): 84.51 (1, )

), 3.95-3.89 (m,1H), 3.78-
ble 3.2, entry 7)

21-3.18(m, 2H),1,77-1.24(m,
98.99.70.47, 62,06, 39.69, 30.70, 29.15
2-(8-Methylnonyloxy)-tetrahydro-ZH-pyran (Table 3.2

'H-NMR (400 MHg, CDCL3, TMS): 5 4.572 (s
19H), 1.33-1.07 (m, 10H); 13c
29.24,29.81,27.80, 27.14, 26,

» entry §)

’ IH)’ 3-88‘3.72 (m ZH) 3

- k4 ) -49 d, J: ). - .40 (m'
NMR (100 Mz, cp), TMS): 508 47 g 3o 0:4 He, 2H),1 841
68.25.26,22.74, 19 45 47,6738, 61 84_ 1

7.08. 30.62, 29.9%
2-(0ctyloxy)-tetrahydro-ZH—pyran (Table 3.2, entry 9)

'H-NMR (400 MHz, Cpy, TMS): § 4.54

s 3 : . (t’ J=4 H 1

(m, 1H),3.35-3.32 (m, 11y, 1.78-1.23 (m, 11y, 08; « };&83.83-3.70 (
98.87, 67.74, 6234,31.91,30.84,20 8 29.53,26.32, 25 o5 ~1% 3H); !

e D). 3.60-3.66 (m, 1), 3.51-347
C
38,2273

“NMR (109 MHz, CDCI,, TMS):
»19.74, 14 16,

and  charactepi,o:
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glycerol: acetone ratio used in the synthetic process and the results are shown in Table 3.5
and Table 3.6, respectively.

TABLE 3.5 Optimization of catalyst amount”

Entry Catalyst amount (mol%) Time (min) Yield (%)°

1 No catalyst 120 15

2 2 40 60

3 3.33 30 88

4 5 15 95

5 10 15 95
aReaction conditions: Glycerol (1 mmol), Acetone (5 mmol), Ultrasonication, SolFc; *Isolated yield

The final product yield increases with gradual increase in catalyst amount used in the
protocol, however after 5 mol% catalyst, no change in the yield was observed even after
increasing the catalyst amount to 10 mol% (Table 3.5, Entry 5). The optimal amount of
catalyst was obtained as 5 mol%. Similar trend was observed in optimization of glycerol:
acetone ratio. (Table 3.6) The optimal ratio of glycerol to acetone was noted as 1:5.

TABLE 3.6 Optimization of glycerol:acetone molar ratio”

Entry Glycerol: Acetone molar ratio Time (min) Yield (%)
1 1:1 15 67
) 1:2 15 83
3 1:5 15 95
4 1:8 15 95

aReaction conditions: Glycerol (1 mmol), Catalyst 5 mol%, Ultrasonication., SolFc; *Isolated yield

A comparative study of different reaction conditions preferable for the protocol was
also investigated by carrying out the reaction under room temperature, conventional heating
and ultra-sonication. Different agitation speeds were employed to check the effect of mass
transfer on the kinetics of the reaction. Literature shows that varied conclusions have been
drawn by studies engrossed in investigation of agitation speed on reaction kinetics.®' This
indicates that mass transfer may influence the progress of reaction depending upon the
catalytic system, reactant mixing operation, reactant molar ratio, equipment used, product

properties and many other such parametres.®” The results of our studies are depicted in Table

3.7.

TABLE 3.7 Effect of reaction condition and mass transfer on reaction progress’

Temperature (°C) _ Agitation speed (rpm) _Time (min) % Yield®

Entry Reaction condition

1 Conventional RT 400 360 65
2 Conventional RT 600 360 72
3 Conventional RT 800 120 25
4 Conventional RT 1000 60 84
5 Conventional RT 1200 60 87
6 Conventional 60¢ 1000 45 90
7 Conventional 70° 1000 45 90
8 Conventional 80° 1000 45 86
9 Ultrasonication RT . 5 o5

R eaction conditions: Glycerol (1 mmol), Acetone (5 mmol), Catalyst 5 mol%, SolFc; ‘Isolated yield, “in pyrex

glass pressure tube.

The inferences suggest that by increasing the st.irring speed, reaction proceeds in
forward direction resulting in an increase in prod'uct yield (Table 3.7, Entry 1-5). After
introducing higher temperature to reaction system, it took less time for glycerol conversion,
however, not much enhancement in the product yield was noted (Table 3.7, Entry 6-8). In
contrast, at 80°C the product yield noticeably decreased (Table 3.7, Entry 8) which might be
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catalyst was obtained as 16.55 emu/g, which is slightly less than the fresh catalyst (16.91
emu/g) and it is sufficient for operating magnetic separation. The morphology of the
recycled catalyst was also found to be similar as revealed by its TEM image in Figure 3.11.

Recyclability test _
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FIGURE 3.10 Recyclability test of FSS catalyst after glycerol acetalization reaction

'
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FIGURE 3.11 TEM image of recovered FSS
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magnetic Fe;Os@silica sulfonic acid nanocatalyst offers a green,
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solvent-free process of protection/deprotection reacti

catalyst. In short, protection deprotection using FSS
environmentally benign method.
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. . . . t
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1

A
» the protocol presents g click chemistry pathway for production
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dustrial application.
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CHAPTER

4

Highly selective Tetrahydropyranylation/
Dehydropyranylation of Alcohols and Phenols
using Porous Phenolsulfonic Acid-Formaldehyde

Resin Catalyst under Solvent-Free Condition

4.1 Introduction

The hunt for an alternative green and efficient catalyst with environment-friendly
technologies has been a perceived attention in current scientific research. Heterogenization
of homogeneous catalysts onto solid supports is undergoing well-investigation with an
objective to enhance recyclability of catalyst and thereby minimize disposal problems.'?
Although polymer-supported catalysts and reagents are being utilized in organic synthesis

involved in the post-immobilization process of such

for decades, but the high-cost issue 1 ]
n their applicabilities.> As a powerful alternative

catalysts and low catalyst loading constrai
to this, porous organic polymers synthesized via bottom-up approach has emerged to be

simple, low-cost, easily separable and recoverable heterogeneous catalysts for organic
transformations. Moreover, the bottom-up synthesis strategy offers prospects to design with
different functionalities t0 be used as cata]ysts.“'6 The framework of applications of carbon-
based, metal-free polymeric resins are much wider and appreciable because they are mostly
synthesized from renewable resources and therefore problems raised due to waste disposal,
leaching, metal-contamination in desired products etc. can be avoided easily’

a mesoporous Phenolsulfonic Acid Formaldehyde Resin (PAFR)

cient catalytic activity towards chemoselective protection and

We report herein
history of resin based on phenol and formaldehyde

catalyst that exhibit effi
deprotection of alcohols and phenols. The
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dates back to 1872 when it was discovered b

exchange property of phenol-fonnoldehyoe
been extensively studied and applied as io

Y A. Von. Bayer.* Since the introduction of ion-
resins by Adams and Holmes in 1935, they l}a"g
n exchangers both in academia.and mdustll;)lﬁ?

Functionalized ion exchange resins are regarded as a flag bearer of solid acid catalyst.

Recently, Yamada et g/ 1314 reported an in-water direct dehydrative esteriﬁcatl(:l
process of alcohol and carboxylic acid utilizing Phenolsulfonic Acid Formaldehyde Res

group reported the synthesis of

groups plays a fundamenta yet immense
specific reactive sjtes, 1617 3,4-dihydro-2H-
& BTOUp owing to its simple preparation, low

protected 2-tetrahydropyranyl (THP) ethers
n (Scheme 4.1),18-21

0

O
3,4-dihydro-2H-pyran (DHP)

ROH  __ THPRN . O
DPRN ~o
Alcohol

¢ attack on certain
pyran (DHP) s recognized as an idea] protectin

cost, ease of handling, strong tolerability of the
towards different reagents and . sy deprotectio

iterature, 2232 gach method

Catalysts like sl 1 ainability in thejr methods
Sts like silica sy)fye .

Catalysts,2526 1, furic aciq

> PTSA,23’24 non- recovel'a‘t’]c
Y and non-re

Cyclabl t i A]c13,
clerogeneous metal cata]ystg28-30 h){ € catalysts like

Which may create problems like

etc. Moreover most of the

temperatyre2!.25 etc. and also
on Of : )
“ols specifically, 312 bulky substrates having secondary

number. of polymer-based heterogeneos
able lon-exchange resins and polymer

homogeneous
molecular jo;

Wwaste- disposable

to cataly, jon
Processes of g1, hol Yze the tetrahydropyranylati 1
are some example lon exch ohols or phengls Dowex?!, nafion™
transformatior, 8€ resins foung to effectively catalyze this
R-OH 4 @ Dowex S0WX4-10¢
0 CHaCly, RT AN /O
Alcohol DHP TO o}
HP ether
SC
- . HEME 4.5 Dowex 50WX4~100 feSIN catalyyeq THPRN
Mam;j and Bory; Teaction
Performeq oselectlv?gl“mp piepar.ed Olystyren Pported AlQ] which
from gjy € range faleoho] €action ford g dto exq I 3 Catalysts s
of symmetric iop '8 and phenojs, A the prot ° €Nt yield of THP, ethe

Ocol Succeedeq i, Monoprotectio”
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Ps-AICI
ROH + @ sAC, | o /O
(o) CH,Cl,, RT \O (o)
DHP THP ether

SCHEME 4.3 Ps- AICI; catalyzed THPRN reaction.

However almost all these processes are engrossed in the use of chlorinated solvents
which restricts their applicability for environment-friendly synthesis.

Our continuous interest in the application of polymeric reagents and catalysts™-° and
establishing a more general method for synthesis of THP ethers®” prompted us to exploit the
hydrophilic mesoporous PAFR catalyst for this conversion. This polymeric acid catalyst
mimics the chemistry of enzymes through a phase separated reaction condition. The
hydrophilic active site of the catalyst first attracts the fairly hydrophilic alcohol or phenol
substrate and then after its conversion into the relatively hydrophobic ether product, it is
apparently kicked out from the catalyst site. With this working hypothesis, we tried
protection (deprotection) of alcohol and phenol substrate to their corresponding
tetrahydropyranylated products. Since organic solvents are the major contributor of E-
factors in the fine chemical and pharmaceutical industries, solvent-free reaction condition is
a preferable solution to the waste problem.® Interestingly, our protocol showed excellent
results in solvent-free condition and selectively protected a large variety of alcohol and
phenol molecules affording high yield within a very short time at ambient temperature
without any requirement to remove byproduct. The catalyst seems to be advantageous over
several other industrially used catalyst for the tetrahydropyranylation and presents major
benefits that comprises of easy recovery by filtration, high purity of products compared to
homogeneous catalytic systems, metal-free catalyst, eli'mination of waste disposal problem,
high selectivity, lack of side products and note worthily, environmentally benign solvent-
free reaction condition. The reaction protocol developed is feasible at very mild reaction
conditions viz., at room temperature, with very low catalyst loading and the catalyst

employed is ‘metal free’ polymeric material.

3536

4.2 Experimental section

4.2.1 Materials and methods

The chemicals required, different alcohols, 3,4-Dihydropyran (DHP), silica gel for thin layer
chromatography (TLC) and column chromatogr aphy were 9f ana}lytical grade and purchased
from SpectroChem and were used .w1thout further purification. Formaldehyde and p-
hydroxybenzenesulphonic acid used in preparation of the polymeric resin were purchased
from Sigma Aldrich and used as such. Solvent used were of extra pure grade purchased from
Merk India. Double distilled deionized water was used for the synthesis of the polymer

catalyst.
lectron Microscopy (HR-TEM) was recorded on an electron

i ti Transmission E . .
:{g}r] Oifjoiujg&-zmo, 200kV, JEOL. Scanning Electron Microscopy (SEM) and Energy
© P SEM (SEM-EDX) were recorded on Zeiss Sigma 500VP

- ive X- ectrometry on ) ) :
ggggﬁ‘ﬁﬁ:ﬁ;ﬁ Thermogravimetric (TG) and Differential Scanning Calorimetry (DSC)

analysis were recorded for temperature range 0-500°C at PERKIN ELMER, USA. Diamond

urier Transform Infrared (FT-IR) Spectra were recorded. on a Perk.in-
EIC}/DTQ ;?;?:;:11{ (l;(:le FTIR spectrometer. Inductively Coupled Plasma-Optical Emission
Spl:;rrorr?etry (ICP-OES) was done on iCAP 7600 [CP-OES Duo model. Nuclear Magnetic
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Resonance (NMR) spectra were recorded in Brukar Advance 11, 400 MHz. The value of
Chemical shifts were reported in

ppm (3-scale) relative to the internal standard TMS (0.00
ppm) using CDCl; as solvent.

4.2.2 Catalyst preparation

We prepared the PAFR solid
literature'? where 4-hydroxyb
condensation polymerization wj
6-7 hours (Scheme 4.4).

OH - OH 7
0 H>0, 120 °C, 6. h
. 20, 120 °C, 6-7 hrs ™~
H™ "H Conc~nsation Polymerization
SO3H SOzH
L “n
SCHEME 4.4 Preparation of PAF R catalyst by condensatjve method
The reac

As a pilot protocol, a mixture of 1-octan 1
PAFR catalyst (0.025 8, 7.48 mol%,) wa: 1122;::130 & I mmoy), I?HP
room temperature (RT) under solvent-free (SolF¢) ¢q

indicated ty oy 7 21 18Yer chromatograppy (TLC). After comp
: comp

indicated by TLC the catalyst w et £ ‘on as
e as separated by X On of the reactio

was extracted with ethyl acetate, The extracted):;]r:lrgglel glttr]?non o] the reaction mixture
Nd thus oh

into a short silica gel chromato tai ed
: graphy coly : amned was then charg
to afford 98y, of 1solated yield of desired ;?ggs;?g hexane/ethyl acetate (9:1 ratio) as eluent

4.24 Depyranylation

2-(octylox
catalyst (0. in mett “Octanol, (9,195 g

etha " ’
checking T ¢ :re:;l:)er alnd ICgeneratiop 20:0(0'5 mL) nam
ﬁltrfm on and the resiq mp eteegenerati N of the a) >SPonding g
the isolateq alcoho] a5 product Ough a shq

ohol, th
It coly € catal

1 mmol) and PAFR
echanical stirrer for
ohol was monitored
YSt was separated bY

Ot silica ge ¢, afford 97% of

o PAFR 0,025 H
MeOH RT R\OH + Meo:(oj
Byproduyct
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SCHEME 4.6 DPRN reaction using PAFR catalyst

4.2.5 Catalyst recyclability test

The recyclability of mesoporous catalyst was investigated with consecutive
tetrahydropyranylation reactions reusing the catalyst for multiple times. After each catalytic
run, the catalyst was separated by simple filtration and washed it with methanol followed by
hexane and finally with chloroform. The mentioned process was repeated twice or thrice
followed by subsequent drying of the catalyst at 60 °C for 12 hour in oven and was then used
for the next catalytic cycle. The recovered catalyst was further investigated by IR, SEM-

EDX analysis.

4.2.6 Hot-filtration method

neity of the polymer catalyst, hot filtration method was employed. For
reaction mixture of protection of alcohol for 15 minutes (yield was
30% at that time), the catalyst was separated by centrifugation. The reaction mixture was
then decanted and was continued to stir for another 6 hours. The further progress of the
reaction was monitored with TLC and finally filtrate was analyzed by ICP-OES test.

To verify the heteroge
this, after stirring the

4.3 Result and discussion

4.3.1 Catalyst characterization
At the onset, FT-IR spectroscopic analysis of the PAFR catalyst was carried out to identify
present in the catalyst. The IR spectra in Fig. 4.1 shows

the different functional groups
distinguished peak at 1034 ¢m”' which is the characteristic absorption peak for symmetric
n of -SOsH group in the polymer. The two peaks near

S=0 stretching due to the introductio
uted to the bending and stretching vibrations of =OH

504 cm-1 and 3438 cm’ can be attrib
sorption at 1224 cm’! suggests aromatic —OH stretching. Another

group respectively while ab :
two absorption bands at 1474 cm’* and 1650 cm™ can be assi gned to the C=C stretching of
the benzene ring of the polymer.*

60

% Transmittance
8 &
1

500

30 7 T v T v T T T g T v T
3000 2500 2000 1500 1000
Wavenumber (cm )

FIGURE 4.1 IR spectra of PAFR catalyst
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. !-nnu: m
FIGURE 4.2 a-b) HR-TEM Images ¢

)-d) SEM image

To have a distinct knowledge about the morphology of the polymer catalyst, HR-
TEM and SEM analysis were performed, HR-TEM i i
structure of the catalyst and clearly showed its MEsoporosity ip
images (Fig, 4.2¢c-d) also exposed the mesoporousg surface of the PAFR polymer catalyst.
Results from SEM-EDX in Fig. 43 displayed the pr e of sulfur in its structure
confiming anchoring of SOsH moiety 1o the Polymer, The vy o, of C, O and S were
obtained as 68.98%, 27.01 %.

pectrum g

. OTption-desorption
ISOtheml F[g 44) shOWed




characteristic features of type IV hysteresis loop referring capillary condensation in
mesopores.-Thc s:urf_ace area was obtained as 90.44 m?/g with average pore size of 5.23 nm
The pore-size distribution curve (Fig. 4.4 (inset)) shows uniform sizes of the porous‘

structures.
7
| 55-5.2 nm a— Adsorption
6 - % 5 | —e— Desorption
{ E 41

) 2
“S) 54 :3: 3
£ |12
o 4 g 2
7IRE [ Jy S—— =
‘a y ’ ® Pon.;mmtr:,(mn) = "
s
o
w
o
o 2
=
E
3 1+
e}

0-

! . 1 d I L 0l T T T
; 4 ¥
2% - Relatﬂfe pressure ?PIPO) AR
desorption isotherm and pore distribution curve (inset)

FIGURE 4.4 N2 adsorption-

337°C
280°C
5
8
=
v
=
2
1=
M 560 T 1
300 400 800
he = Temperature ('C)
le of PAFR catalyst

FIGURE 4.5 NH;-TPD profl
med desorption) test of PAFR catalyst

;-TPD (Temperature program 1
7°C suggesting Brénsted acid sites*

Results of NH

; . ; °oC and 33
exhibi nia desorption peaks at 28(,) : , i o T i
ir): }tl}]lbltec’:aaln?tnsczlrface offering moderate acidity having acid sites of 596 pmol g”! (Fig4.5).
Bro etcii 4 d sites surroun ed by hydrophobic organic moieties are foynd to be preferable
congistif)n a(ti:)r conducting in-water organic reactions in forward direction. i e e
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anticipated that the hydrophobic ‘tail’ of the substrate alcohol lies parallel along the
hydrophobic surface of the catalyst preventing adsorption of water over the active sites
(which restricts its access with the substrate molecules) and thereby helps to retain its
catalytic activity without-interacting with by-product water.

The thermal stability of the catalyst was enquired by TGA and DSC analysis. The
representative curve for TGA in Fig. 4.6 shows total three humps at 60-150°C, 200-300°C
and 450-500°C. The weight loss near 100 °C can be associated with the release of physically
adsorbed moisture on the surface of the polymer. The mass loss in the range 200- 300°C
may be due to the decomposition of sulfonic acid group while in the third step, mass loss
above 400°C is possibly attributable to the breakdown of polymeric back

bone. The
endothermic peaks appeared in the DSC plot also compliments the three steps of mass loss
of the polymer as suggested by the TGA plot.*?

~ -
Heat flow (w/g)

v
ey
S

.
-
D

. --18

¥
S0 100 150 200 g W.
Temperature (°c) 450 500
FIGURE 4.¢ TGA-DSC graph of PAFR catalyst,

4.3.2 Tetrahydropyranylation of alcohols

ohol sting its catalytic

took an equimolar mixture of 1-octang) and DHF(’)aSmain pacnols a well. ¢ at the out};:at

in solvent-free condition at room temperature ag 5 1; ored it with 29 ME of PAFR catalyst

and feasibility of the r a p}]!;t brot i f
C

observed to progress i - - 10 our ple
| asur ‘eact]
completion of the reacti ‘ : . o tetrahydrg ; i Teaction was
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f catalyst loading using 1-octanol (1 mmol), DHP (2 mmol), SolFC, RT.

FIGURE 4.7 Optimization o

98

£ 3

°/&Converslon
N

T T T T T T T 7

i
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¢ Equivalent of DHP (mmol)
FIGURE 4.8 Optimization of DHP equivalent (mmol) using octanol (1 mmol), catalyst 0.025 g, SolFC, RT.

With this rough idea and in an attempt to find an optimum amount of catalyst for
achieving maximum yield in minimum time, we checked feasijbility of the reaction at the
same conditions but with different amount of catalyst loa_dmg ie 0.015 g 0.025 g, 0.030
and 0.035 g. It was found that the reaction re;ulted bes.t yield in shortest time with 0.025 g
(7.48 mol%) of catalyst (Fig. 4.7). Further increase in the c:atalyst amount had no any
significant effect on the yield. The product ylel'd and conversion time were Qevefoped by
optimizing the appropriate amount of DHP which was obtained to be 2 equivalent of the

alcohol (Fig. 4.8)-
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TABLE 4.1 Catalytic activity of PAFR catalyst with that of several reported catalysts

S1 Catalyst Conversion Reaction condition ‘ E;fef‘ﬂ‘i‘if/
no F:(CIBE) )3 75-98% Et,0, RT, 60-180 min ‘ ;4
; SO;H-S4i02 40-99% CHyCly, RT, 15-100 mins . ‘-)l
3 AICl3.6H,0 74-98% MeOH, 30-80°C, }0-180 mins ]8
‘4 AIOTH, 65-100% CH,Cly, RT. 45 min- 24 hr B
5 Polyaniline salts 38-75% SolFc, 50 °C, 8 hr 51
6 Dowex 50WX4-100 75-98% CH:Cl,, RT, 7 min- 24 hr *
7 Polystyrene-supported 89-97% CHyCly, RT, 7 min- 24 hr
8 gl'sC(:;b-4 (Zeolite) 44-58%, Toluene, RT, 30-249 min 34
9 Bronsted-Lewis  acidic  70-97% SolFc, RT, 40-90 min 43
ic Liqui Phenol 0%) ’
10 :’(:lllfRuqmd 26-98% SolFC, RT, 60-180 min Prew

methodologies for tet: nydro
4.1. It was observed that
solvents, while yield of the sol

vent-free protocols (Table
the mark, also need vigorous ¢

4.1, Entry § and 9) are not up to
ondition for the reactio

n (Table 4.1, Entry 5). Homogeneous
catalysts (Table 4.1, Entry 1 and 5), on the other hand, finds difficulty in separating the
catalyst from reaction mixture which needs tedious w

orkup. Several heterogeneous polymer
and zeolite catalyst were found to be employed in thi i
6-8) but use of dichloromethane

(CH2Cl,) and toluen
their benign nature, Imidazole-b

ased Brensted—Lewis acidic Ionic Liquid (Table 4.1 , Entry
9) was also reported as a recyclable catalyst under so]
but although the protocol selec

vent-free condition for this conversion
ineffective in case of phenols,

tively protected aliphatic and benzylic alcohols but remained
Apparently the present
alcohols and phenols using hy

protocol for tetrahydropyranylation of
drophobic PAFR resin

allylic and benzylic
lectron-donating to
epicted in Table 4.2
the desired products
€qually effective in

. NS ranging from e
‘ g groups at different position. The Outcome is ¢
where it can be observed that the alcohols were s
in moderate to excell

: moothly converteqd to
. ent yield. To oyr Surprise,
phenolic COmpounds (Table 4 2

the Catalytic system ig
Entry 14-16) also which make the protoc
. . , , ol extremely
generghzed. Some differences were encountered with different Substrat :
to achieve completion of reaction

f oneou ot di €s in the time taken
* T'OT Instance, tetrg Ydropyranylation of aliphatic alcohol
g‘:ll;}: :.22,EE1:tryl 83:11 and t.ose of penfzylic alcohol with electron-donatiﬁg substituent
lable4.2, 1; (r)zdi-n ) a: }(l)ne.of its p;)smon In benzene ring was reéported to be highly reactive

: g ether in excellent yield. Howey i i
donating substituent gt the same time (Table 4.2, En:rr;' Zin\?:slcfg;zup 5 b o Aectron-
. aforementioned Ieactions. In ¢q ast pres
substituent (Table 4.2, g '

ntr
ntry 5-7) was observed to slow i
secondary hydroxyl group of Cholesterg] (Table 4.2 Ent oy the i
of adamantano] (Table 4.7 Entry 1y con
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TABLE 4.2: Scope of Tetrahydropyranylation of Alcohols and Phenol using PAFR catalyst*

[ = ~
R-OH + \OJ PSAF (0.025 g) R-OJ:O'J
Sol FC, RT
Entry Alcohol Product Time (hrs) Yield® (%)
1 e oy Q I 95
p g OH \/\o/(oj 1.10 97
.
3 ,©/\ . /@f\ o’LoJ 1 08
MeO —
4 Meojg/\OH Meo:@” o/ﬂoJ 2 04
MeO MeO
s /@/\OH /@/\OJ_OJ 1.15 97
2 Cl
6 i = o . 115 97
Br -
oH ]
; @” Ao 2.5 95
sl oN
8 o~ 0 S W I\Oj 1.30 08
9 \IN\/\/\()/LO 1.10 96
10 /\/\(\o’['oJ 1.20 97
i . 1.30 o
12 3 97
13 1.45 06
o.__0
- OR® 1.45 95
0. 0,
15 JORe 1.35 08
0. .0
in Meo/@’ 1® 1.30 98
0 () 1.30 86
17 ,/j\/\ T e SO :
)\/\OH o o ©
1.35 87
ke /?i/\/\on s o”L J

i
(0.025 g, 748 mol%), SolFC, room temperature; bigolated yield

“Alcohol (1 mmol), DHP (2 mmol), catalyst
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_ fj ) R-0

SCHEME 4.7 Probable mechanism of tetra

4.3.3 Deprotection of THP ether using PAFR catalyst

In order to establish the régenerative Potential of the protoco]
catalyst to cleave the THp &roup was algq iNvestigated. For this, fe
introduced to the reaction,

We obseryeq that addition of methang]
agent to obtain the alcohols from THp ethers,

Interestingly variety of THp ethers
(7.48 mol%) PAFR catalyst in | ]

€e alcohp] produc

, the Capability of PAFR
W drops of methanol Was
Served as g deprotecting

were easily deprotected by stirring with 0.025 g
methang] Within 40-60 m;

Ninutes, The method afforded
ts with Cxcellent yielq. (Table 4

:3) without the cleavage of
methodology““,

polyfunctiong] molecules,
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TABLE 4.3: Deprotection of THP ethers using PAFR catalyst”

. e
() !
| PSAF 0.025 l/

-8 S R-OH + )

L MeO™ O
MeOH, RT
Byproduct
Entry THP ether Deprotected product Time (min) Yield® (%)

1 O/\O’J/'(‘)] ©/\0H 55 97
: oreee g™ 60 95
L Ly y

o ~F

) NN, 45 97
4 P L/Oj OH

3 /\/ro foj /\/\COH 55 94
P o . )
5D

6
' O ) LO) ” 40 96
“THP ether (1 ;mol), catalyst (0.025 g, 7.48 mol%), methanol (1 mL), room temperature; “Isolated
yield
R—O/(Oj
/\ H
© ®
Qlen Qe nd
H
\/ MeOH
R—O o Polymer
ne
MeO~ O
Byproduct
i i f THP ethers using PAFR catalyst.
hanism for depyranylation 0
SCHEME 4.8 Proposed mec

Ti talyst
4.3. clability test of ca ‘ _ '
4 R.ecy' _ he catalyst was also investigated by carrying out successive protect]-(iﬁ
The reusal?hlty ﬁglt sibst rates. After each run, the catalyst was filtered and washed wi
reaction of alco .

i The results of five catalytic
d dried for the next catalytic run.
hexane and chloroform an
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recycling runs are depicted in Figure 8. It clear]
has not deteriorated much even after the tenth cy
recoverability of the catalyst

y shows that the efficiency of the catalyst
cle which undoubtedly reveals the excellent

- 97 97 95 35
3° 80
c
O
.E w
Q
=
S 40
Q
20
0
1st 3rd Sth
Run oth o
-
FIGURE 4.9 Recyclab:hly test for PAFR Catalyst
75 - 
70 -
65 -
5 c0-
=
=
=x

100 or chap g 1ch Catalytic cycles were
g€ 1n itg CoOmposition. To our



gellfht, the IR spectrum of the recovered catalyst gave similar peaks as in the spectrum of
fres catal ygt (Fig. 4.‘1 0). Neverthe]ess, the morphology of the recovered catalyst as observed
in its SEM image (Fig. Fig. 4.11a) is almost similar with the fresh one. The EDX analysis

(Fig. 4.1 ]-b) revea?ed wt% of C, O and S as 67.71%, 28.70%, 3.59% respectively. A slight
de‘crea_se in the v.velght 9% of S from 4.01% to 3.59% in the recycled catalyst can be attributed
to its little leaching of SOsH group from the catalyst surface during washing.

oo ”m 2 4 6 8 10 12 U
Tima 103150 ull Scale 226 chs Cursor, 0.000

2pm EMT 2 20000 BigwlAs §82
wWoe §0mn Mage 140KXK

FIGURE 4.11 a) SEM image and b) EDX spectra of recovered PAFR catalyst

4.3.5 Hot filtration method
The heterogeneous nature of the PAER catalyst was examined by Sheldon’s Hot filtration
e leaching of active species of the catalyst to the reaction

method to investigate possibl
mixture. For this, the catalyst was separated from the reaction mixture after 15 minutes of

the reaction and then the decanted reaction mixture was continued to stir for another 6 hours.

But it was observed that the reaction did not progress at all during this time and also no trace
of S was obtained in ICP analysis of the filtrate. T_hls confirmed that no leaching of acid sites
from the catalyst surface took place to the reaction medium and established the excellent

heterogeneity of PAFR catalyst as well.

oscopic data of synthesized compounds

4.3.6 Spectr

2-(benzy10xy)tetrahydro-ZH—pyran (Table 4.2, entry 1)
'H-NMR (400 MHz, CDCls, TMS): & 7.27-7.38 (m, 5H), 4.70-4.82 (m, 2H), 4.51(t, J=15Hz), 3.87-4.02 (m,
BC.NMR (100 MHz, CDCls, TMS): 6 157.08, 129.39, 121.60,

1), 3.51-3.57 (m, 1H), 1.88-1.51(m: 0% ’
o e35, 77,26, 62.09, 3043, 25,25, 1885 IR (cm') 2970, 1653, 1542, 1027, 892, 776; Elem. Anal.
4, for: il o7 H 839, O 16.64; Found: C 74.95, H8.38, 0 16.67.

Calcd. for C2Hi602: C
0-2H-pyran (Table 4.2, entry 4)

2-(3 4-dimethoxybenzyloxy) tetrahydr
. 6.91 (d, J=8.4Hz, 2H), 6.83 (d, J=10.5 Hz, 1H), 4.74-

HLNMR (400 Mz, CDCli, TMS): 8 7.02 (5 1H), 6 : ' 2 V0, 40255

MR ( 1), 3.95-3.91 (m,1H), 3.89 (5, 3H), 3.87 (5, 3H). 3.56-3.52 (m, 1H), 1.88-1.26 (m,

120.52. 11099, 110.93, 97.50, 68.76, 62.28,

(m. 2H), 4.45 (d, = 12 Hz. 1 -
6H); "C-NMR (100 MHZ, CDCl,, TMS): 148.9, 1485, 130.7,
: 1) 3089, 2968, 1663, 1563, 1053, 051: Elem. Anal. Caled. for C4HagO4: C

55.83, 30.64, 25.35, 19.53 ; IR (cm
66.65, H 7.99, 0 25.36; Found: C 66.65, H 7.97, 0 25.38.

loxv)tetrahydro—ZH—pyran (Table 4.2, entry 5)

TMS): & 7.46 (d, J=5 Hz, 2H), 7.29 (d, J= 5 Hz, 2H), 4.96 (s, 2H), 4.76-4.46 (m,

2-(4-Chlorobenzy
S Tz 1H), 1.87-1.14 (m, 6H); “C-NMR (100 MHz, CDCls. TMS): 128.49,

'H-NMR (400 MHz, CDCL»
1H). 3.88 (s, 1H), 3.52 (t, J=
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128.32, 118.33, 110.70, 94.67, 71.08, 62.97, 30.68,

29.69, 25.43, 19.76; IR (cm) 3023, 2893, 1612, 1597,
1032,992, 815; Elem. Anal. Calcd. for C 12H50,CY:

C63.58,H6.67,0 14.11, Cl 15.64: Found: C, H. O.
2-(4-Bromobenzyloxy)tetrahydro-ZH-pyran (Table 4.2, entry 6)

'H-NMR (400 MHz, CDCI3, TMS): §7.42 (d, J= 10 Hz, 2H), 7.19 (d, J= 9.5 Hz, 2H), 4.71-4.66 (m, 2H). 4};“
(d, J=15.5 He, 1H), 3.85 (1, J= 12.5 Hz, 1H), 3.51 (1, J= 7.5Hz, IH), 1.84-1.51 (m, 6H). *C-NMR (100 MHz,
CDCl, TMS): 137.42, 131.38,129.36, 121.26,97.69, 67.93, 61.99,30.52,25.47, 19.31; IR (cm) 2931, 1678,
1572, 1038, 813, 648; Elem. Anal. Calcd. for C>H,50,By: ¢ 33.16, H 5.58, O 11.80, Br 29.46; Found: C, H,
0.

2-(0ctyony)—tetrahydro-ZH-pyran (Table 4.2, entry 8)

'H-NMR (400 MHz, CDCl;, TMS): § 4.51 (t, J=5 Hz, IH),

3.84-3.77 (m, IH), 3.67-3.66 (m, 1H), 3.44-3.37
(m, 1H), 3.32-3.28 (m, 1H), 1.85-1.43 (m, 6H), 1.34-0.19 (

m.12H), 0.81 (1, J=10 Hz, 3H); '*C-NMR (100
MHz, CDCl;, TMS): § 98.80, 66.86, 61.58, 30.84, 29.78, 2 .87,

28.76, 25.25, 24.52, 23.78. 21.66, 18.74,
13.08; IR (cm') 3017, 2986, 1654, 1534, 1 -7, 992, 865; Elem. Anal. Caled. fo Ci3H160,: C 72.85, H 12.23,
0 14.92; Found: C 73.02, H 12.26, O 14.6__

2-(8-Methylnonyloxy)-tetrahydro-zH-pyran (Table 4.2, entry 9)
'*H-NMR (400 MHz, CDCl;, TMS): § 4.50

). 3.65 (1, J=8, 1H), 3.43 (d, =13 Hz,
1H), 3.39 (1, 7.8, 1H), 1.51-1.02 (m, 18H), 0.80-0.67 (m, 6H); '-‘C-NMR (100 MHz CDCl, TMS): 5 98.64,
67.47,61.97, 38.39, 33.28,31.83, 30.10, 29.68, 26.62, 26.52, 25.46, 22.52,19 f 5

1127, 1051; ; Elem. Anal. Calcd. for CisHayg

36, IR (cm'') 2934, 1449, 1363,
448, 0 13.20; Foung: C74.32,H 12.52,013.30.
2-(3,7-Dimethyloct-6-enyloxy) tetrahydro-ZH-pyran (Table 4.2, entry 11)

'H-NMR (400 MHz, CDCl,, TMS): 5.02 (t, J= 5.6 Hg, 1H), 4.49 (4, J= 4 Hz, 1H), 3.82-3.68 (m, 2H), 3.44-
3:30 (m, 2H), 1.93-1.89 (m, 2H), 1.77.1 05 (m. 17H), 0.84-0.78 (m, 3H); “C.NMR (100 Mz CDClL.. TMS):
130.02, 123.84, 97.81, 64.94, 61 23 36.25, 29.79, 23 69, 24.45,2435 1855 16 60; IR -0 29435' 1509,
1246, 1142, 1019; Elem. Anal. Caloy for CisHxs02: C 74,95, 13 76 0 1331, Pogng, o) 2945,
13.86. TR

31; Found: C 74.32. 4 11.82, O

(s, TH), 3.79 (¢, J= 10Hz, 1H

3-((@3s, 88, 9s, 108, 13R, 14, 17R)-

12, 13, 14, 15, 16, 17-tetradecah
(Table 4.2, entry 12)

'H-NMR (400 MHz, CDCl, TMS): 8528 (1, 1=s5.6 |y

> ) . . y I, z, IH). 465
2H), 2.29 (s, 2H), 2.29 (4, J= g Hz, 2H), 1.95.0.79 (g, 42H), 0.79 (8‘8’31'{';’;)3'86‘3'82 (n; 1), 3.49-3.39 (m.
CDCl, TMS): 5 139.94, 120,53, 95.87,76.20, 74.97 ¢ 55.10, 4., > 3H); MC-NMR (100 MHz,
38.48,36.29,35.15, 34.77. 3 .97, 24 a¢ > 10:49.13

_ 26, 20 o2 41.28,39.21 3348, 3774

+ 1698, 1476, 1008" <02 23.26, 79, 21.81,21.54, 20,02, 19.05,
224,H11.39,0 637 * 637 Blem, Al . 1o C22Hs0;: € 81.64
2-(((3s, 5s, 7s)-Adamantan-

10, 13-Dimethy]-

17-( (R)-6-me
ydro—lH-cyclope

thylheptan.
ntalalphenap,

2-y1)-2,3, 4,7, 8, 10, 11,
th ren-3-yl)o

Xy)tetrahydro-2H-pyran

; 97 (t, J= 19, .
» TMS): 8§92 78, 767, 6361, 45,34 H42§ %H)f'% o 2.13:071 (m, 12H)

57,4175, 36.37. 3 05 3261,
! , 1478 ] o, ey o0 32

o round:C75.98, 1 1033, g 120629’ 1919 633; Elem. Anal. Calod. for
2-phenoxytetrahydro-ZH-pyran (Table 4 2, entry 14) o
H-NMR (400 MHz, CDCl,,

26 (m, 2H) 7
96-3.90 (m, 1), 3 63_ S 1,06 (d, J=5H,,
8 157.08, 129 39, 121.60, ll6.4)8. 96,3; '5682((','; 1H), 2 o7. 1 2H),6.98 (1, J= 10 Hz, 1H), 5.43 (&

2 <325, 18.86: IR (oo IR (100 MH3, CDCl3, TMS):
017.9s. Foung. C 74 :(;(3)“1 7954 1467, 1232, 947, 846;
. -2H-pyrap (Table 4.2, ' 786,0 17.84.
255385 o 19 DL THSY 010 g,
MHz, CDC,, Tmg). § é 54 83, S 35.23)~62.01 (in, 1H), 78543) l:z4 ]2231 55]317) (t.’z J= 4Hz, (11%)0
N 24; El e ) 54, . - * 3 5 C-NMR
8.45,0 16.84. T Anal. Caleg. for 0 pg o 6 03'73%56’ 3529, 20.53, 18 g7. I (om")

. ) . 5016.64; FO d’ ’ 47]’}1
((Te"“hyd""2H'Py'an-2-yl)oxy)butan-z-ol (Table 4 e
€



'H-NMR :
2H), 1'84f‘1‘%01 l\(ﬂnlfzé S)D?& T1M7$). 84.57-4.51 (m, 1H), 4.09-4.06 (m, 1H), 3.86- 3.69 (m, 2H), 3.50-3.35
s e ooy 3185, 30,07, 3533, 30,53 IR (o 315 SC-NMR (100 MHz, CDCh, TMS): 3 101 5,

N LA 17, .07, 0/, .33, 53; cmh) 3189 ? 9 . .0,
Calod. for CoHuOs C 6072, H 1170, 0 18.57; Foufl o c)69.54’ 5935,7 §8(734] 8136?) 1028, 885; Elem. Anal.

4.4 Conclusion

Protection (and deprotection) of the free hydroxyl i i i

substratel is one of the most frequently conﬁ‘orz’ted sznt}izzit;:te;rezuiﬁf\ﬁggl?na] f?iCOhO]
and efﬁleent catalytic approaches are highly desirable. We reported hére a facileecot e
synthesize THP ethers by protection of variety of alcohols and phenols usinpro Oci)l o
amount of mesoporous Phenolsulfonic Acid-Formaldehyde Resin catalyst whicgh I
moderate to excellent yield at room temperature. The same catalyst was also effs r?Sulted
cleavage of THP ethers to obtain the free alcohols by easy deprotection method Pe::ve o
found to be superior to many commercially available solid acid catalyst in terms .of i ijas
rate of reaction. Excellent heterogeneity as verified by hot filtration method o o e
notable feature of the catalyst. Our protocols showed excellent chemoselectivit in fan ol
the primary alcohols. In addition, phenols were also successfully protecte()il sing ¢ o
method, which otherwise are difficult to achieve. The reaction was carried ltlsmg o
temperature under solvent-free condition and the spent catalyst was reused at le(:;t la(t) tri?'r(:gsl

which are of great significant from green chemistry perspective.
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CHAPTER

S

Waste-to-useful: Biowaste-derived heterogeneous
catalyst for a green and sustainable Henry reaction

5.1 Introduction

Jtural, food and chemical industries are produced several tones a day
worldwide. Pilling up of wastes could be of great concern if not properly managed. On the
other hand, “where there's muck there's money”- as they say, exploiting waste to useful
materials is highly gainful both environmentally and economically and has received kindled
attention in research. 14 Recently, waste biomass has been increasingly targeted as a

sustainable feedstock for the production of fuels®® and chemicals.”

As catalyst play a vital role in synthesis chemistry and offer major contribution
towards the cost of a synthetic protocol, so maintaining sustainability of the catalytic
substance is an essential part of production. HOYVCVGT most qf the catalyst traditionally used
in synthetic chemistry are based on .metals whlgh have toxic effects towards environment
and also expensive and scarce adding prgductlon cost to the proccess.’ Exploitation of
biomass waste for development of promising catalysts or catalyst-support or solvents can
considerably alleviate the solid waste disposal problen} and reduce possible environmental
pollution. Also it make synthetic protocols eco-friendly, benign, biocompatible and

the natural abundance of waste biomass.'®!! These non-toxic, green

economic due to ) v o
contribute to minimize the hazards caused by chemical processes

catalysts can immensely . c | ards
and ti;ereby can give a new direction to the traditional thinking,

Recently extensive research workg have appe?red in .acadgmia utilizing biomass-
based catalyst which include §ulfonated blowa§te-denved solid acid catalysts, waste shell
derived solid base catalysts, bio char, several biomass ashes etc. Hara and his group'? first
established the synthesis gf the sulforll?ted. carbonaceous catalnyt§ by incomplete
carbonization of sulfoaromatic compounds'® which paved tl_le way to utilize biomass waste

lfonated carbonaceous catalysts. A wide range of biomass waste are

for preparing such su

The wastes from agricu

107




. . . . . 5
being explored for carbonization such as rice husk %, coffee residue!

, il palm trunk'®, sugar
cane bagasse'’, sweet potato'® and man

y more. All these catalysts find attractive application
in esterification reaction usefully in the field of biodiesel production. Similarly, a number of

biowaste-derived solid hase catalysts have been developed from waste shells that are rich in

calcium.'® Apart from these, several other bio-derived catalysts are being attempted to design
by impregnating metal complexes or nanoparticles over biomass materials, 202!

However reported literature suffer from sever
engrossed in fabrication of biomass feedstock
chemical processing like high temperature ca
metals and acid functionalization etc.
biomass like biomass ashes are use

al demerits as most of the studies have
which need harsh, wasteful and expensive
rbonization, complexation or doping with

2 Interestingly, in recent years, several raw waste
d as such (without

. The Henry reaction, also known as the nitroaldol reaction, is one of the most
important synthetic tools for C-C bond formation. The product B-nitroalcohol or B-nitroaldol
ceutically significant organic compounds and

. !l many organic transformations.2%2% [ jterature
suggests a good number of methodologies reported for synthesis of B-nitroalcohol products

by Henry reaction, including both homogeneous and hetero eneous :
reaction, introduced by L. C. R. Henry®in 1896, involg [nualysts. The classical

produced from nitroalkane molecule with a carbony] e]

oduct
R1_CHO + RZ_CH NO KF/A|203 H H
T TRY RI-C—c-gr2
OH NO,

SCHEME 5.1 KF/AlLO, catalyzed Henry reaction

Balini e al3% prepared 5 silica-

heterogeneous catalys

su

t and employed it to 1 Oﬂei T’N'dlethylpmpy‘amine (KG-60-NEtz)
5.2). aITy out neat Synthesis of nitroaldols (Scheme

NO, . o] KG-60-NEt, NO,
R H™ R, 75-94, R Ry
SCHEME 5.2 Silica-supporteq : OH
pporte N,N-dlethylpropylamme Catalyzed He
Gupta et o/ recently reported o1y reaction

aldehyde using a two i

(Scheme 5.3), The reac

. nation po]
tion Polymer
was found recyclaple hrep o ormed at 70°c

Up to three timeg.
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~ 2-D Zn(ll)-coordination
| . Y polymer based catalyst N NO;
70°C, 48 hr A7 R
R

R
SCHEME 5.3 Henry reaction using Zn(lI)-coordination polymer based catalyst

. While varieties of synthetic heterogeneous catalyst from chemical industri
W1del)f used for Henry reaction, only a few reports suit the *12 Principles Sf E}S o
Chemistry’ outlined by Anastas and Warner;** hence use of bio-waste catalpsts ) h_reen
desirable from sustainability and green credential ethos. The significance of n)i,troaa;re h lgh!y
organic synthesis and our continued interest involving heterogeneous catalysts/reacz ? 14S ! 142
prompted us to explore the Henry reaction further. Recently our group has reg or;tsd

sustainable protocol for production of biodiesel using Musa acuminata peel ;)sh s a
heterogeneous catalyst.*> Musa acuminata is a well-known and abundant species of b o
found in all over south-east Asia. With our current interest in the application of i\Tvn; l:a
biomass, we believed that basic Musa acuminata peel ash (MAPA) could be a promisisn e
catalyst for the Henry reaction. &

5.2 Experimental
s the information regarding the chemicals and reagents used in the
ation methods, reaction procedure and different analytical and

d for catalyst characterization.

This section depict
experiments, catalyst prepar
spectroscopic techniques use

5.2.1 Materials and methods
Banana (Musa acuminata) peels were collected from Kolasib district of Mizoram, India and
icals and solvents used were of analytical grade, and

were dried in sunlight. All other c1.1em1 .
they were procured from commercial sources and used as such without further purifications.

5.2.2 Catalyst preparation
re collected an

and characterization
d thoroughly washed with distilled water and sun-
1 pieces and burnt in open air, and grinded to

Musa acuminata peels we
ried peels in muffle furnace instead

dried. The dried peels were then cut into smal
produce the ash catalyst. We also tried calcination qf the d .
of open burning and observed almost same catalytic activity.
FT-IR, TEM-EDS, SEM, XRD, XRF, XPS, BET and TGA analysis were performed
to evaluate the structure and morphology of the catalyst. IR spectra were recorded on a
Perkin-Elmer Spectrum One FTIR spectrometer. XRD me_asurements were carried out on a
Bruker AXS D8-Advance powder X-ray diffractometer with Qu-Ka radiation (\=1.5418A)
EDS images were obtained on a JEOL, JEM2100

with a scan speed of 2°/min. TEM-_ _ : ' '
equipment. N2 adsorption-desorption isotherm was obtal'ned with a Micromeritics ASAP
2010 surface area and porosity analyzer. XRF analysis of the powdered sample was

uorometre. XPS analysis was carried out in a

g4 Pioneer X-Ray fl )
i+ instrument under room temperature

fi Bruker
performed of . model no. ESCALAB X
lysis was carried out in a Perkin Elmer,

Thermo Fischer Scientific, m0 ESCALA

% idity. The thermogravimetric
e iamond yG/DTA instrument. The wei ght loss of the catalyst was recorded within
200 °C/min under constant flow of

USAA, Diamond T _ o
a temperature range 0 °C -800 °C, heating rate 0.1 °C
nitrogen 'gas. 'H and 13c NMR spectra of the synthesized
Bruker Avance Il (400 MHz), Bruker Avance III (5

tetramethylsilane (TMS) as an internal reference.

compounds were recorded on a
00 MHz) spectrometer using
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5.2.3 Basic strength and basicity measurement of the catalyst

The basic strength of the solid base catalyst MAPA was investigated by Hammett indicator
method. The Hammett indicators that were used in the experiments are bromothymol blue

(H_=7.2), phenolphthalein (H_=9.8), alizarin yellow R (H_= 11.0), 2,4,6-trinitroaniline

(H_=12.2) and 2 4-dinitroaniline (/1 =15). In each case, about 2 mL of Hammett indicator
solution in benzene was added to 200

The basicity of the catalyst was determi- .d by titrating with 0.1 N benzoic acid
diluted by benzene and using bromothymol blue as

Tus _ indicator. The end-point was noted when
the green color of the indicator disappeared completely.

5.2.4 Henry reactions and methods of analysis

5.2.5 Catalyst recyclability test

The catalyst was tested also for its potentia] reusability. A fier each cata

and decantation, washeq with ethy] a yuc run, the catalyst

cetate and then dried

geneity of the catq)
checked for possible leachin yst, hot filtratio
g of acti N method w
Henry reaction with catalyst MA Ve sites from the catalyst s as adopted which

3.3 Result and discussion

e



5.3.1 Catalyst characterization

| FT-IR analysis, perform
functional group present in the cat
oxides (O—K—O stretching at 702 ct
em™), Si—O-Si (1006 cm’') bonds. T
hydration of the ash sample by absorption of moisture.

ed as a preliminary tool (Fig. 5.1) to investigate the
alyst, provided strong revelation about presence of metal
n’"), metal carbonates (C-O stretching at 1655 and 1403

he broad band at 3431 cm’! can be attributed to rapid
4546 --

70

02
-K-O
833
1006

Si-O

% Transmittance

1403 c-0O
T T

T T

30 4
a000 350 \Wavenumber (cm_)

' y
(1] 2 . ; } ' e |l 1 6: ll P ) 5

present in MAPA. //‘f

40.61), C (wt% 34.34) and K
P and S as the other elements

Spect_rum 1




Intensity

T v T T ’ T v T T |
20 25 30 3I5 40 45 50 55 60
2 theta (degree)

FIGURE 5.3 XrRD diffracto

The strong characteristic peaks of K,O w
5.3) of the ash sample at 20= 29.71, 25.59,‘ 40.73,
reference file No- 77-2176. Presence of oxides

‘ very strong basic sites were also evidenced by the XRD diffracto

gram of MAPA

gram,

d it presented K,
component (% mass fraction 65,1 1% i

10.86%, 7.78% and 6.07% respectively (Table 5. )

To examine the greater detail of the

Species present ip the ash sample, X-ray
! Photoelectron Spectroscopy (XPS) analysis

was alsg performed. X-ray Photoelectron
Spectroscopy (XPS) analysis enableg to study the chemical
of material which g of ance in case ¢

_ Composition near surface region

ost mport f catalytic compound. Fig. 5.5 depicts the
| wide scan spectrum (Fig, 5.5a) of fresh ash Catalyst along with deconvulated Spectra (Fig.
5.5b-d) of major elements present in MAPA It can a]gq provide the j
oxidation state of an element by caley]at; indi :

The XPS Survey spectrum sug

45.59), OXygen (atomic wt?, 36.54) an potassium
The overlapping peaks at bind:

positions located gt bindi
" (e.g. metal carbona

CO42




eV and 294.4 eV. Th
ey both refer to the K* state bonded to smaller

s or carb »
47“;(;nates. The Ols peak positioned at 530.5 eV corresponds to

2p_| ». positioned at 292
anions indicating oxide
the presence of metal oxides.

o

X500

-d) TEM images of MAPA

;‘. Sthnm
a e

)-b) SEM images and ¢)

FIGURE 5.4a
nin recovered MAPA after 10" recyclability test

netallic concentratio

TABLE 5.1 Metallic and non-!

as given by XRF analysis. —— :

= he component in the 5% Mass fraction in fresh o, Mass fraction in recovered
MAPA MAPA after 10" recycles.

S| No Name of t
MAPA sample
110

: k- ?(5) 864 624 "
k 38

2 Si02
7.787 4.42

3. Ca0
. o 6.067 1.80
' Pals 2.857 0.79

5. SO3
o 2.427 0.69
. Mg 1152 1.29
7. Fe203 0.737 0.19
8. ALOs 0.227 0.40
% MnO 0.192 0.092

10 CcuO
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a) XPS survey Spectrum, b) K2p, ¢) C1s, d) Ols spectra of MAPA

The TGA profile of the ash catalyst covering range of 0°-800 °C was presented in
Fig. 5.6 which showed initial weight percent loss of 12% around 100-150 °C that can be
attributed to evolution of moisture, The further decrease in mass of the catalyst around 400
°C may be mainly due to the oxi

dation of carbonaceoys Material present in the catalyst and
release of CO,.48

Results from N, adsorption-desorption analysis by BET model is presented in Fig.
5.7 which shows both N> adsorption—desorption 1sotherm and pore-size distribution curve
(inset). The hysteresis loop can be clearly seen in the isotherm which is a characteristic
feature of type-1V isotherm associated with capillary condensation in mesopores. The surface
area of the catalyst was found to be 538.975 m?/ g while pore volume and pore diameter are

0.522 cc/g and 3.379 nm respectively. The pore-size distribution curve (inset) depicts
mesopores of very uniform sizes in the range 3-5 nm,

R and 2,4,6-trinitr0aniline..
catalyst, color of the first thr
change. This revealed that b
H <122, Also basicity of th

lue, phenolphthalein, Alizarine Yellow
It was noted from the €Xperiment that when mixed with the
ec indicators got changed byt that of the 4th indicator did not
asic strength of the catalys ie i
€ catalyst wag determined b
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FIGURE 5.6 TGA thermogram of MAPA
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FIGURE 5.7 BET jsotherm and pore Siz€ distribution curve (inset) of MAPA.
everal metal oxides like CaO, MgO, ZnO

28 have examined S
noticed that for alkaline earth metal

and
of basicity but similar with

ite the order
d that the a

Recently: Akutu éf al. /
SrO, BaO 71Oz ete- as possible solid base catalysts
; talytic activity follows Oppos

oxides the trend for €2 ‘ .
f the oxides. So 1t was suggeste

bstraction of proton from
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nitroalkane did not need strong basic strength, rather it is favorable w
basic strength. Therefore the extremely high catalytic activity of MA
the high surface area (~539 m?/g) and its moderate basicity.

ith oxides having weak
PA can be justified with

5.3.2 Henry reactions

We initially tried the Henry reaction by using the model reaction of 4—nitr0benzaldehyde and
nitromethane under solvent-free condition at room temperature using Musa acuminata peel

ash (MAPA). Formation of single, isolable P-nitroaleohol product was found to be

TABLE 5.2 Study of the effect of nitromethane equivalence®

Entry Nitromethane (Equiv.) Time (min) Yield (%)
1 0.5 30 34
2 1 15 08
3 2 20 95
“Aldehy‘:le (1 mmol, 1 equiv.). ”Isolated3yield L -

Various solvents such as DCM, CHCls, THF, MeOH
tested to examine the influence of the sol ;
observed that solvent free i

and reaction time.,

Further, we studied the influence of nir, i
; oalkane €quivalent i i
We =) L o
well as the reaction time. No significant enhancement of the convers'] theffeaCUOD o o
observed by mereasing the amount of nitroalk o Teaction was

entry 3 and entry 4), e to more than one Cquivalent (Table 5.2,

10Wn in Table 5.3. Using 10 m,g o%the
W yield of the desired product
i ‘ St gave very high vie| %
Y 4). However, the use ofhigher amount of the cataly)s:t m%ldg ltle];] rggcgt?og
not improve the yield (entries 5

TABLE 5.3 Optimization of catalyst loading®

Entry MAPA (mg) T :
1 T me (min) Yield (%)°
2 5 30 75

3 15 20
5

20 30




e

while E-factor was calculated as 0.115. These

Atom economy was found to be 100%
y and greenness of the protocol. The detailed

quantified results justified the sustainabilit

calculation is shown below.
Mass of atoms in desired product

Atom economy=
Mass of atoms in reactant

02128 100% = 100%
(0.151+0.061)g o

Total waste (2)

Product (g)
Mass in the process= Aldehyde + Nitroalkane + Catalyst
=(0.151 + 0.061 +0.020) g

=0.232¢g

E-factor =

Product = 0.208 g
e = (0.232- 0.208) g

Total wast
=0.024 ¢
0.024 g
actor 0208 g

phatic aldehydes with nitromethane under solvent free

ns of various aromatic and ali
OH

TABLE 5.4: Henry reactio

conditions’
ions @ MAPA catalyst (20 mg)
/U\ + R1f\'NO ___—————___——_-.- R N02
R” H 2 Solvent free, RT
1 2 R1
R= alkyl, aryl, R1= alkyl, H a-x
OH OH
o __NO; NO O,N OH
__NO; _NO,
02N NOZ
15 m, 98% c, 20 m, 97%
a, 20 m, 94% b, e d. 20 m, 97%
OH qH OH
2 __NO,

OH NO
o o )
B
g, 25m,96% MeO™ 1,30 m, 90%

F . N f, 20 m, 98%
e, 20 m, 96 %o OH OH OH
MeO OiNOZ Me© A /©)\/NO2 /I\/{ i
, 20 m, 92%
- MeO J. 30m, 87% k, 30 m, 94%
OMe

i, 30 m, 88% OH
OH OH
OH /j\v\/l\/kv/ NOz @A | -NO, OZN\@)\\] ,NOZ

/V\/I'\/NO2 n, 20 m, 85% 0.N
2% o, 15m, 97% p, 20 m, 97%

TBSO

Br
s, 25 m, 96% t, 30 m, 93%

m, 20 m, 86%

OH OH - OH
H __NO & 2 -NO;
; e O o

" i NC™ | 20 m, 98%
q, 20 m, 98% oH OH OH
OH W NO; T"”:'O\/\/\)\lfN02 [ )/ ~-NO2
/\)‘ NO2 ::/\I w, 25 m, 84% OzN l\
o v, 20 m, 84% P ? #" x, 20 m, 90%
u, 25 m, 90% roalkane (1 amol), MAPA (20 mg) at room temperature, 15-30 min,

L nit
"Reaction conditions: Aldehyde (1 mmol), 11

isolated yields.
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We compared the catalytic ability of the MAPA catalyst with a variety of
commercially available heterogeneous solid-base catalysts through Henry reaction of 4-
Nitroaldehyde and nitromethane. MAPA exhibited excellent dominance in catalytic activity
in terms, of both yield and reaction time, when compared to Amberlyst-21, imidazole, L-
proline and KF/ Al,Os.

To examine KO to be the active site for Henry reaction, we opted for K>0-AlO3
catalyst system forwarded by Wang et al.’' and compared the activity of that catalyst with
MAPA keeping all reaction conditions same. Both sets of reactions were observed to give
similar yield. However the reaction with catalyst MAPA took slightly less time for complete

conversion than that with K2O-Al203; which may be attributed to the synergic effect of other
oxides and carbonates present in MAPA.

With the optimum reaction conditions in our hand, the reaction was generalized for
diverse aldehydes to show the generality and scope of our method. The results were
summarized in Ta' ¢ 5.4. We have found that the reaction of aldehydes with nitroalkane in
the presence of MAPA catalyst gave good to excellent yields in all the cases within 15-30
minutes (Table 5.4, a-x). In general, aromatic aldehydes bearin
substituent like nitro group (-NO2) (Table 5.4, b-g) undergo fas
donating substituents such as methoxy group in the aromatic ring (Table 5.4, h-k) took longer
time for complete conversion to their corresponding B-nitroalcohols. It was observed that
our catalytic reaction system was tolerant to a broad functional groups such as -NO, -F, -
Cl, -Br, -OMe, -CN, -CHs etc. as well as for aliphatic and olefinic aldehydes. In addition to

these, common protecting groups such as -OTBS and -OTHP remained unaffected, which
indicated the mild nature of our methods (Table 5.4, entry m and w).

g an electron-withdrawing
ter reactions while electron

Finally we also tried a 50 mmol scale-up of the proposed protocol of Henry reaction.
4-nitrobenzaldehyde (50 mmol) when treated with n

: ; itromethane (50 mmol) using 1g of
catalyst gave the corresponding nitroalcohol product in almost quantitative yield (98%) after
isolation.

5.3.3 Recyclability test of catalyst

Recoverability test
98% 98%
98
97%

97
X
e
,% 96
& 95%
g . 95%
S

) l

93

1st Run 3rd Run Sth Run 8th Run 10th Run
Run

FIGURE 5.8 Recyclability test of MAPA in Henry reactions
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FIGURE 5.9 2) KPS survey spectrum, b) Cls, ¢) Ols, d) K2p spectra of recovered MAPA.
The recyclability of MAPA was investigated with consecutive Henry reaction using
: 8 depicted the results of consecutive runs performed by reusing
1s. Negligible depreciations of catalytic

different substrates: ig. 5. _ ts
the catalyst under imal reaction conditio
performance Were 0 the test reactions even after ten catalytic cycles. XRF,
XpPS. XRD, EDS; TEM and SEM analysis of the recovered catlalyst o li0 investigated
) ) ble change in morphology and chemical composition of MAPA

which revealed no apprecia
even after 10th cycle of reused-

The XRF study of the recycled catalyst dlnglayeld 6_4.7?“/;1 of K20) which was only

0.35% less than that of the fresh catalyst- In XP anzoi ysis of the recovered catalyst, the

atomic wt% of K has slightly decreased g9, to 10.88% 0'nly.. The wide scan

spectrum and deconvulated spectra of Cls, Ols and K2p were shown in Fig. 5.9 which are

pec . he fresh one- EDX study shows that the wt% of K and O of fresh catalyst was

gf(s) S/m;; gr4z(i)s vely while in the recovered catalyst the wt% of the same are 13% and

0
27%, (Fig. 5.10). )
little leaching © the major catalytic active sit

Its Wi ; ites of

All the;z rrctasu 10 successive cycles. The small d_echnatl_on of catalytic activity can

MAPA even % this little Jeaching © K0 which also gives evidence for K-0 to be major

be explained DY The TEM, S Fig: 5.11) and XRD diagram (Fig. 5.3(i1)),

i e for retaining similar morphology and

active site of the catalyst: :
b S ed catalyst also pr0v1ded evidenc

of the recover
chemical composition to that of the

bserved in all
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FIGURE 5.10 EDS analysis of the recovered catalyst (after 1" cycle).

The heterogeneous nature of the catalyst was examined by hot filtration method
where after S minutes of the reaction (yield was 40% at that time) the catalyst was separated
by centrifugation. The decanted reaction mixture was then continued to stir for another 6
hours, but no progress of reaction and enhancemem d was observed afterwards.
Accordingly, it was concluded that no leachin from catalyst surface
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FIGURE 5.11 a-b) TEM and b-c) SEM imag
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5.3, i
4 Spectroscopic data of synthesized compounds

an-1-ol (Table 5.4, entry b)

3.6
3,60 (1H, ). 54.61 (2H, d, 1=20 Hz). § 5.62(1H, m), 8 7.61 2H.d
124.13, 127.01, 129.67, |453-|,

2-nitr0~1-(4-nitr0phenyl)eth

Brown solid.'H NMR (CDCl. 400 MHz): &
J:S}
| 1z), 6 8.21 (2H, d, 1=7.6 Hz): 13c NMR (CDCls, 125 MHz): 6 69.98
47.95; IR (KBr ; | 8
! pellet, vm;._\/cm‘}: 3320, 3075 2065, 2885, 160
20. , 2965, 2885, 8.1532, 1508, 1430, 13
, : , 1358, 1320, 1112
) , , 1058,

765, 654.
anol (Table 5.4, entry d)

(1H, s), 5 4.49-4.71 (2H, m), 85.61-5.64 (1H, m), 67.61 (1H
s): *C NMR (CDCls, 125 MHz): 6 69 84.

2-nitro-1-(3-nitrophenyleth

400 MHz): 81.25

Yellow solid,'H NMR (CDCl3,
1=8 Hz), 68.31 (1H,

t, =8 Hz), 7.79 (1H, d. =8 Hz), 88.19 (1H, d,
124.14 130.14, 132.15, 140.35, 148.

511, 1437, 1368, 1329, 1095, 1058, 775, 668.

n-1-0l (Table 5.4, entry h)
§2.92 (1H, s), §3.80 (3H, 5), 8 4.46 (1H,d, J=12.4 Hz) ; &
’ : 1045
(2H.d,J= 7.6 Hz), 8 7.30 (2H, d. 1=7.2 Hz); ®C NMR (CDC 8
’ I3,
[R (KBI‘ pe"et, Vlllﬂxfcn]'l): 3378, 3083 2943

12 3

1.14, 123.77, 45: IR (KBr pellet, vaw/om™): v33 04, 30
2470 112,155, 1 . 3075, 2956,
phenyl)—l-nitroetha
DCls, 400 MH2):

1,d, =8 Hz), 6 6.90
127.3, 128.55, |

1-(4-methoxy

Yellow liquid,"H NMR (€

(IH, t, J=10 Hz). §5.382(11
114.35,

425, 1182, 1050, 790, 663.

125 MHz): § 55.35; 70.65. 30.55, 159.96:

2896, 2780, 1612, 1536, 1
methoxypheny])ethan-1-0! (Table 5.4, entry J)

400 MHz): 8
13¢ NMR (

1) 3308, 30

2-nitro-1-(3,4,5-tri

IH NMR (CDCls,

1.25 (1H, ). 53.82 (3H,s), 8 3.86 (6H. s), 8 4.482- 4.631 (2}
482-4.63 "
CDCls, 125 MHz): 6 56.13, 60.85, 102.69, 133.97, 137.9
¥ .97, 137.93,

Brown solid,
25, 2960, 2856, 2775, 1608, 1556, 1423, 1110, 1043, 771

m), d 5.38-5.41( [H., m). §6.60
8; IR (KBF Pe”eh Vinax

(2H. s):

139.33, 153.3 Jem
_3-ol (Table 5.4, entry u)
400 MHz): §0.95-0.98 (3H, m), & 1.38-1.46 (4H, m). & 2.047 (3H, d

b 4.]8—4.20 (1H, m);
el 3306, 2946, 2830, 1608, 153

2-nitrohexan
13¢ NMR (CDCls, 125 MHz): 6 13.74. 16.12

6, 1206, 1148, 1035, 838

.90-3.94 (1H, m).
IR (KBI pellel. Vimax

Light yellow liquid:
J=4.4),52.69 (1H, s) 53
1835, 34.91, 71.8, 8641
755.

/em

2-yl)0xy)heptan-3-0l (Table 5.4, entry w)

2H-pyran
39-1.85 (17H m),82.51 (1H, 5), §3.37-343 CH, m), 3

Light yellow liguid.'H N ‘ ‘
3.48-3.53 (1H. m).53.63 5 78 (2H.M): 53.85-3.9 (1H, m), 0 4.48-4.56 (1H, m): 3C-NMR (100 MHz, CDClx

. 20.0, 20.3, 25.1% , 253, 25.7, 28.4, 25.7.28.6, 28.8, 29.1, 35.7
' 5 13]6 IR (KBF peIIEt \’m"w/Crn'

2-nitro-7—((tetrahyd ro-
MR (CDCL:

5.4 Conclusion
inata banana peel ash was used as a readily
of [)’-nitroalcohols via

conclusion bio
In able and 10T
he catalyst was well-

2

available, low-C0S e
Henry reaction at room tempel
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characterized by various spectroscopic and analytic techniques to obtain knqwledge about
its possible structure, composition and morphology. The catalyst can b§ c::za!sﬂy recovered,
and reused at least 10 times without any noticeable loss in its catalytic activities. Further, the
ash catalyst is environmental friendly and eliminate any imminent disposal prqb.]em. The
amenability to scale-up the protocol also makes it a convenient and competitive green
heterogeneous catalyst for industrially important Henry reaction.
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CHAPTER

6

A Sustainable Protocol for Production of Biodiesel
iese

by Transesterification of Soybean Oil Usi
ing

Banana Trunk Ash as a Heterogeneous Catalyst
s

6.1 Introduction
alternatives for energy instead of convention
e . al fossi
sc1ent1ﬁc comfnumty due io the growing dema(:ls(;s‘:)fﬁfl:llhas been a
n and populatlon growth.' The limiting supply of fos s'leﬁsl associated
env1ronmant, call an urgent need of powerful Substit:1 el and their
biofuels such as biodiesel and bioethanol are emerte-: to them. As
. n
uction in CO2 emi SSion%l ngo aguglg;;en
i ur

which results net red
y®, high combustion efficiency and less emissions.’
.
rmed as Fatty acid methyl esters (F
. . AME
!1ke vegetable oils, animal fats etc. by chg;n?ze1 Pr0d9ced
The transesterification process rz d;ecaCtlo}r:s
es the

viscosity © vegetable oils to conventional diesel engines®® wh
triglyceride molecules of oil/fat react Wi 1 mO!ecules to give fatty acid metvlv1 ere the
along with 8 roduct (Scheme 6.1). Different small alcohol mol y esters
| alcohol etc- can be used for this transformation; howev ecules like

of reactivity, green chemistry metriczr :rllzthano]

cost-

methanol, ethanol, ' '
more guitable 10 terms

has been ouno b
effectiveness.‘ -

Quest for new
continuous effort in
with rapid urbanizatio
harmful effects towards

a sustainable solution,
cces of enersy

alternative soY y |
content t0 provide better lubricit

from renewable
ion, ansestert
ils t make it usable in

like esterificat
ith alcoho
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J\ H,C-OH
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Soybean oil Jj\ Glycerol
(Triglycerides) R? “OMe
Fatty acid methyl
ester(FAME)

SCHEME 6.1 Transesterification reaction

Bird’s eye view of literature suggests plethora of both homogeneous and
heterogeneous catalysts to catalyse transeste.ﬁﬁcatiqn regction. . Although severql
homogeneous base catalvts are being used for this reaction in lndustn:fll level d}le to their
high reactivity'?, they ! .ve potential disadvantages Wl}lch includes dolfﬁculty-m product
separation, sensitivity towards fatty acid content, formation of soap as side reaction product

etc.'™1% Heterogeneous catalysts can overcome these difficulties by easy separation and

reusability of catalysts which also help to minimize the production cost. It is known that

Sources are being targeted

largely as heterogeneous catalysts by partial carboniz organic materials.23-27

ation of the

However, most of these studies involve harsh fabric
functionalization, metal impregnation or high temperature sulf
materials which lowers the sustainability of the method as wel] ag limits its utilization in
industrial scale.28-3! S it s highly desirable to investigate simp

. le, waste-derived, low-cost,
eco-friendly yet efficient solid heterogeneous catalysts for biodiese] production to meet
commercial viability,

' Our interest to examine the catalytic
properties of Musa acuminata banana trunk ash, i y
interest in the development of
production of biofuels?235, j

6.2 Experimenta] section

6.2.1 Catalyst Preparation and characterization techniques
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Musa acumina
ta banana trunk was coll
washed pro : ollected from Kolasib distri i
properly with water and then sun-dried. They were cut inig ‘;;Nﬁzomn and were
all pieces and th
en

b . . .
urnt. Finally 1t was grinded to fine powder to obtain the ash catalyst
Infr - ffracti '
ared (IR), X-Ray Diffraction (XRD), X-Ray Fluorescence (XRF
Resolution Transmission Electron Microzzgosca‘a‘{ing
pe (HR-

Electron Microscope (SEM), High
ray (EDX) and Thermogravimetry (TG) analysis were carried
e

TEtI\t’l), Energy dispersive X-
out to examine the structural com iti
_ position and morpholo of th

:;erz poted on a Perkin-Elmer Spectrum One FTIR specgtz,ometeercalflalll}:rslfé;rdh e FTIR spectra
we;; rimented on JEI\’A- , JEOL Electron microscope. Powde and EDX were
v e rc?corded ona X Pert Pro, PAN analytical diffractometer with co r XRD patterns
mer instrument with model no. TGA 4000 was used to carry out TGIK?nzrlloqe' IIA Perkin
meter of Bruker Avance I (400 MHz) z:ig I;In:\IMR
ernal

spectra was obtained on 2 spectro
reference tetramethylsilane (TMS) and solvent CDCls.

measurement
solid base catalyst :s an extremely important information t
i 0 measure

ivity. To estimate the strength of basic sites of
' thod was employed- The following Hammett inﬁ;fa‘t’;‘r’;"’sed catalyst
the expenments-bromothymol blue (H_=7-2), phenolphtha]ein (H =9.8), ali were used in
4,6-trjnitroaniline (H_= 12.2) and 2 4-dinitroaniline (H] 1 5??; yellow R
solution in benzene and left to egtl:;[li(l)).rzatg
(S

(H_=11.0), 2,
catalyst was shaken in 2 mL of Hammett indicator
. in the solution indicates higher basic strength of the catal
atalyst

for some time.
e indicator while no colour change refers lower basi
asic strength th
an the

than that of th
indicator.
6.2.3. Transesteriﬁcatio

6.2.2. Basicity

n of soybean oil
ied out by taking soybean oil (0.7 g), followed b
i y

The Transesteriﬂcation reaction Was carri
addition of met anol (0.2 mL) and catalyst (0.050 g) taken in a roun bt 1
stirred magneticall for several hours: The development of reaction and formation f’f‘Sk and
was frequently checked by Thin l.:ayer. Chroma.tography (TLC). When TLCOdF AME
reaching completion © e transesterlﬁcat_lon reflctlon, the newly synthesized biodi isplays

trifugation. Excess methanol present in thlesel was
The resulted Fatty acid metehr))'lio:sl‘:g;

Separated from the glycero] layer by cen
mixture was under rofary evaporator.
MS technique for confirmation about
u

en evaporate ;
or biodiesel Pro uct was analysed by 'H NMR and GC-
tion

product formati and purity-
6.2.4. Catalyst reusability test
ioni tic of a solid heterogeneous catalyst is its abi
One of the most sxgmﬁcant. ch:flractens : lystis it -
recycled for further ap on. Tf’ ex.amme the probable reusability of the cta);:? be
cransesterifi f il using recycled catalyst Were performed under yst,
the catalyst was centrifuged :;‘(;

ion 0 the Soy .
optimized rzzgi onditions er each catalytic Tuf
ptimiz recovered catalyst was dri
nd then wash yst was dried in v
decanted aoC. for 5 h, @ used for next cycles. e

oven at

6.3 Rest

the functional groups present in the catalyst, IR spectroscopi
> 6.1 reveals the exclusive presence of mg:;

. .

6.3.1 Catalyst chard

a ;
To have kno“éf:fjcted. The spectra I i

analysis W85
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oxides and metal carbonates in the ash sample. The peak at 708 cm™ can be referred to the
vibratory stretching of K—O bonds of potassium oxide while the peaks at 1636 cm™, 1400
cm”™' can be accredited to the carbonyl vibration of metal carbonate entities. The broad peaks

at 3416 cm™ appears due to the vo.n of moisture adsorbed on the surface whereas the
characteristic vibration band for Si-O-Si bonds appears at 963 cm~! 3236
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FIGURE 6.1 IR spectra of the a) fresh catalyst, b) recovered catalyst
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FIGURE 6.2 XRD diffractogram of the catalyst

XRD analysis of the catalyst was carried out in order to study the presence of possible
s in it. The occurrence of strong characteristic peaks of K>O can be
wn in Fig. 6.2 at 26=29.81, 25.49, 40.99, 50.34 (JCPDS

diffraction peaks at 26= 31.41, 26.74, 34.27 can
le No- 87-0730), the peaks at 26= 30.73 and 26=
as according to JCPDS reference file No:
the ash was confirmed by appearance of
89-3609). Apart from these, several low
buted to the presence of MgO, P»0:s etc. in

crystalline entitie
observed in the diffractogram as sho
reference file No- 77-2176). While strong
be assigned to K2CO3 (JCPDS reference fi
37.23, 55.02 are may be due to CaCO;z and Ca0O
87-1863 and 82-1691. The existence of SiOz in
peaks at 29=33.70 (JCPDS reference file No:
intense peaks were observed which may be attri

the solid ash catalyst.
The catalyst was also examined by XRF analysis which provides information about

the inorganic components of the ash sample. The rgsults strongly established K>O as the
major component of the catalyst having % mass fraction 58.72% while SiO2, CaO and MgO
have mass fractions 17.45%, 6.8% and 4.6% respectively. Apart from these, various other
elements and oxides were found to be present in the ash in trace amount. This results

appropriately compliments the results obtained by IR and XRD analysis.

0000 1144 SEI

fAHS
—

d b) SEM images of the catalyst

was studied by HR-TEM (Fig. 6.3a-b) and
fferent magnification shows number of

FIGURE 6.3 TEM images an
gy of the catalyst

holo S
I mob The images di
tructures of the catalyst.
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FIGURE 6.4 EDX spectra of the catalyst

The EDX spectra (Fig. 6.4) showed K, O and C as the
in the ash catalyst where wt % of O, C and K are 36.4%,
Some other major elements present are Si, Ca, Mg,
given by XRD and XRF analysis and also establish
present in the catalyst.

predominant elements present
32.78% and 23.45% respectively.
Fe, P etc. This strongly supports the data
es that K>O might be the major basic site

The thermal properties of the catalyst were
TGA-DSC thermogram of the catalyst which
catalyst with respect to temperature. Here the initial weight% loss near 150 °C can be
attributed to evaporation of moisture, while th

e further loss in the range 700- 800 °C can be
probably due to the release of CO and CO2 due to the oxidation of carbonaceous matters in
the catalyst.

also examined and Fig. 6.5 presents the
presents the percentage weight loss of the

Surface property of a catalyst plays an im
behaviour as the surface area and pore volume can be
N2 adsorption-desorption isotherm of the MBTA catal
depicted in Fig. 6.6. The hysteresis loo
mesoporous surface indicating type IV iso

portant role to analyse a catalyst’s
correlated with its activity. Therefore
yst was elucidated by BET method as
p in the isotherm clearly shows adsorption in
therm. The surface area of the catalyst was found
to be 39.067 m*/g while pore volume and pore radius are 0.2] cc/gand 2.77 nm. The porous
structure of the catalyst gives major boost to the high catalytic activity of the catalyst
accommodating the basic metallic sites.
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.. the catalyst Was also investigated by Hammett
e bromothymol blue, phenolphthalein and
nt that when mixed with the catalyst, the
f the third indicator did not change. This
e range of 9.8 <H <11.0.

Musa acuminata banana trunk ash

FIGURE 60 N

ba -
To study the surfa ¢ indicators 11}(
st mthod VS0 i om the ST
alizarin yello¥ changed colov? ¢ may liein th
first fwO indw?torscn th of the catalyst m2Y . it
stated that basic ME from soybean oil using
A

6.3.2 Synthesis 0
catalyst
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After characterising the Musa acuminata banana trunk ash catalyst it was checked for its
potential application in synthesis of FAME by transesterification of soybean oil. As a pilot
protocol, to 0.7 g of soybean oil, 0.2 mL of methanol was added with 0.05 g of the prepared
catalyst and stirred the mixture in a 25 ml round bottom flask with constant stirring of 1000
rpm under room temperature. The reaction was regularly monitored by checking TLC and
formation of FAME product was observed within 30 minutes of reaction. After 6 hrs of
stirration, reaction was completed as indicated by TLC.

Soybean
oil

3
I3, A
n'E,o\_)\,olrnz H,0R

Biodiesel
FIGURE 6.7 Schematic diagram of production of biodiesel from soybean oil using MBTA catalyst

The reaction was then scaled up to gram scale and 7 g of soybean oil was allowed to
stir with methanol (2 mL) and 0.5 g of catalyst under the same reaction condition. After
completion of the reaction, the reaction mixture was centrifuged to separate the gf cerol
layer followed by evaporation of excess methanol in rotary evaporator. ’
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FIGURE 6.8 'H NMR spectra of soybean oil.
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1H NMR spectra of FAME or biodiesel produced from soybean oil

FIGURE 6.9
product confirmed the formation of FAME a
s

The 'H NMR study of the final
transesterification product of soybean oil. The 'H NMR spectra of soybe l
an oil and

synthesized biodiesel are presented in Fig. 6.8 and 6.9 respectively. In Fi .

observed that the characteristic peak for methoxy proton appears as.a sin llg.t6.9 it can be

and the peak of a-CHz protons is visible as a prominent triplet at 2.28 ppmg ’I?h at 3.66 ppm

of these two peaks confirms the formation of corresponding methyl ester of sosbzr;l;ezflance
il.

In Fig. 6.8, peaks due to glyceridic protons in soybean oil can be observed

4.5 ppm, while in Fig. 6.9, the absence of peaks near this region supports the foe near 4-
FAME. To calculate the percentage conversion of soybean il to the conespondinng?tlo'n o
(C) from I NMR spectra, the following equation is used where Awme and Acm re% lodiescl
integration value of -OCH3 (methoxy) proton and a- CHa2 (methylene) protons e;s o
ester respectively hich were observed to be 1.00 ppm and 0.68 ppm in the pecti.
Apparenﬂy, the oil t0 FAME percentage conversion was calculated from the equ:gf):lh-jé

98.39%.
C=100 % (2Ame/ 3AcH2)

out the chemical composition of the synthesized FAME

knowledge about .
t s carped out which enables quantitative analysi
product, sent in the product sample. The chromatogram 2:)3t':liiegfﬁ(t)he
m

distinguished componel {)e: diesel sample is shown in Fig. 6.1

as chro natography iodiest in Fig. 6.10. The identificati
falcu]aﬁon of percentage §ompo§1tlon 0 'the EAME from the GC-chromatogram a;:?i;ng
in Table 6.1a mentionlng their retention time (R-T-). Quantification of compositio €
the soybean el product revealed that 1t consists of Methyl (14E)-1 4n13f
octadecadieno major component (§6.63%) followed by Methyl palmitate (20.68’%)-
Methyl linoleate 20.55%); Methyl cis-1 |-eicosenoate (3.89%), Methyl Docosanoate
(1.]6%) etc.

T
0 ppm

Iso

ate a
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FIGURE 6.10 GC-MS chromatogram of FAME
TABLE 6.1 Chemical composition of the synthesized FAME derived from GC-MS studies _
Slno R.T. Component identified Corresponding acid % composition
1 30.07 Methyl (14E)-14,17- C19:2 56.63
octadecadienoate
2 24.02 Methyl palmitate C17:0 20.68
3 28.57 Methyl linoleate C19:2 14.55
4 32.18 Methyl cis-11-eicosenoate C21:1 3.89
5 34.96 Methyl Docosanoate C23:0 1.16
6 33.75 Methyl 17-octadecynoate C19:1 0.39

A biodiesel product is considered to be ap
meets the standardized quality as specified by AS
and Materials) and EN 14214 (European Co
impurities or contamination in biodiesel produ
which it is necessary to evaluate the product a
density, FFA acid value etc. are some imp
biodiesel sample. The physicochemical prop

plicable in a diesel engine, only when it
TM D6751 (American Society for Testing
mmittee for Standardization). Presence of
Ct may create several issues to the engine for
ccording to the standard measures. Viscosity,
ortant measures to examine the quality of a
erties of the FAME synthesized from soybean

found to be within the range of international

standard
TABLE 6.2 Physicochemical properties of the synthesized FAME

Properties Soybean oil biodiesel ASTM standard value EN standard value

Density (g/cm?) 0.872 0.870-0.890 0.860-0.900

Kinematic Viscosity (mm?¥s, at 5.42 1.9-6.0 3.5-5.0

40°C)

Acid value (mg of KOH/g of 0il) 0.48 <0.5 <0.5

Flash point (°C) 151 >130 >120

Cloud point (°C) -0.2

6.3.3 Reusability of the catalyst



reduction in rate of the reaction as well as yield was observed and after the 4™ cycle only
61% conversion could be obtained (Fig. 6.11).

This depreciation in catalytic activity may be attributed to the leaching of certain
elements in the ash sample which can reduce the number of active sites of the .catalyst.
Possible accumulation of the by-product glycerol over the catalyst surface also may be
another reason for this loss in activity which may lead to block the active sites resulting low
biodiesel conversion compared to reaction with fresh catalyst. The IR spectra (Fig. 6.1b) and
EDX spectra (Fig. 6.12) of recovered catalyst revealed no change in the morphology and
composition of the catalyst after being recycled after 4™ catalytic run.
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URE 6 11 Recyclability test of the catalyst on transesterification reaction
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E 6.12 EDX spectra of recovered MBTA catalyst
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Limiting fossil fuel reserves and the upward concerns rfegarding its ‘ detnmsntal
environmental effects have made renewable fuels an extremely suitable altf:matlve asa fuel
for the future”. Biodiesel can be an attractive and technically feamble substltpte to
conventional diesel, however the commercialization of the product is still a mattef' of dlstre§s
due to its high cost. As catalyst is an important contributing factor. of the cost involved in
production of biodiesel, introducing cheap and easily prepa.rec.l benign cgtalysts can help in
bringing down the cost of biodiesel synthesis, without negotiating the environmental factors.

In this work, we presented the application of banana trunk ash as a cosf and labour
effective green solid base catalyst for synthesis of biodiesel from. soybean oil. The easy
preparation method and its availability as t}atural waste .matenal makes the cata]yst
exceptionally promising which do not require any chemlcgl treatment. The reaction
procedure also do not require elevated temperature and was carried out at room temperature.
Due to the large economic viabi® y and environment-friendly nature, we believe that this

protocol offers excellent industrial applicability for large-scale production of biodiesel in
near future.
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7

owave—assisted highly stereo-selective one

A micr
ion under solvent-free conditions

pot Wittig react

7.1 Introduction
is one of the most fundamental
yet fascinatin
g synthetic

1 of carbony! groups d
i ue to the ‘essential and ubiqui
quitous’ role of C-C
-C double

Olefinatio
transformations in organic chemistry
lization,l The Nobel prize-wjnning Wittig Olefination? reaction i
d for the exact placement of the C-C double bond - pocd
to perform

bond functiona
f alkenes even on the i
€ mdustn’a] 3-
scale. 5 The

licable metho
n of alkene by the reaction of an aldehyd
yde or

and regiose]ective preparation 0
ion allows the formatio

chemo-
classical Witt1g reactl ws E o ,
Ketone with tripheny]phosphme ylide (Wittig reagent) eliminating triphenylphosphi
as a side produc (Scheme® phine oxide
Phap-CH Ry Base | 28
PhsP + R'CH2X a2 PhgP-C
. . Phosphonium salt 3P-CH-R'
Organic Halide Phosphorous Ylide
® @H o O—C’R ] Wittig reaction R‘\C—-CHR-
Ph3P'C 2" - \Rz R2/ + Ph3P:o
Aldehyde Alkene  TVriphenyl phosphi
/Ketone oxide phosphine
SCHEME 7.1 Classical Wittig reaction
widespread prominence and recognition, it suffers from vari
ultistep protocol, less atom economy etc‘ga;“%;s
. e

Despite Ve vion, m

, S Hvity, separa ion,

difficulties like ® ec S

main difficulty of this reaction 15 the remova
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1 of the side product triphenylphosphine oxid
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in solution-phase reactions.’ Another drawback of the Wittig reaction .is the .need -for
multistep synthesis that involves preparation of the precursor phosphomum ylide using
alkyl halides and an external base (which leads to the. form?tlon of halide salts that requnri
separation and disposal) and successive reaction of ylide with carbonyl to produce alkene.

In recent years, there are several successful attempts to overcome these drawbacks and to

. . . . . . . 9 "
enhance green aspects of the Wittig reaction, which includes b;al]-mlllmg, one-pot
. . . . . . . 6,|
synthesis,'® microwave irradiation>’ and reaction in aqueous media,®'! etc.

From the first implementation of microwave technology in organic synthe.sis by
Giguere and Gedye'? in 1986, microwave-assisted organic  chemistry experienced
revolutionizing growth. This unconventional energy source eliminated .the difficulties
related to conventional heating th - includes slow and time-consuming heating, unexpected
decomposition of components, overheating of substra}e or produf:t, loss of energy els)cl.;
thereby, reducing reaction times from hours to minutes, Increasing yields and selectlv.lty. '
This also enhanced the production purities by lowering the unwanted side-reactions as
compared with the conventional heating methods. The conventional Wittig reaction, which
is often tedious due to long reaction time, can be upgraded by employing microwave heating
technique to make it time and energy-efficient.>*'*'s- Microwave irradiation in solvent-free
condition is always preferable because it provides chances to work with open vessels

avoiding the risk of high-pressure development and increasing the potential of such reactions
to upscale.!’

In 1968, Buddrus'® demonstrated, for the first time, a one-pot Wittig olefination
reaction which replaced the more energy and raw material consuming classical multiple step
reaction, coupling three or more substrate components in a single efficient operation. This
attempt commendably ameliorated the long, tiresome multiple-ste

P process by reducing no
only the operational time but also consumption of huge amount of solvent used in the overall

procedure.® As for example, M. L. Kantam et al. ' reported a protocol for one pot Wittig
reaction among aldehyde, a-halo esters and PPh; to afford quantitative yield of a,p-

unsaturated esters with subtantial E-selectivity using Mg/La mixed oxide as an efficient
heterogeneous base.

X Mg/La mixed oxide, PPh, R’

~/ + PheP=0

R DMF, RT R

R-CHO + <

SCHEME 7.2 One-pot Wittig reaction using Mg/La mixed oxide

While the same transformation was ¢
nanocrystalline magnesium oxide as an
and Tan®, on the other hand, r

arried out by B. M. Choudary et /8 using

effective catalyst in one pot synthetic method. Liu
eported to perform one pot Wittig reaction for the s

ynthesis
of macrolides.
X NAP-MgO, PPh R'
R-CHO + ¢ g s . =~/ + PhpP=0
R’ DMF, RT R
SCHEME 7.3 One

-pot Wittig reaction using nanocrystalline MgO
Balema ez al.® in 2002 published a unique s
ballmilling phosphonium salt with K2CO:s.

mechanochemical, one-pot, solid-state synthetic

triphenyl phosphine, aldehyde/ketone and org
K2CO:s.

ynthesis method of phosphrous ylides by
This result inspired them to design a
method of Wittig Olefination starting with
anic halides by ball milling together with
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However, only limited

T, reports have been publi

flr;;(;?cai?j el}"lfolnge?ztally benign protocols i lnlscl:]jgtitr?uc?mpete Pl eidbmznd tor

n of soluble” d tri ophir . !

transformation, we ine\.resztiin : tpglmer_supported tr‘Ph“m}’lphOSPhiﬂfgf f?c:1 . (;}lterest e
, gated a novel triphenylphosphine-mediated srl e organic

, solvent-free Witti
g

reaction under microwave irradiation.
The reaction W i
as first attempted with a-halo esters which led to in situ fi
ity formations
of

stabilized ~ ylides and  further extended t
. : : 0 ¢ bt
E)E;félnzzll});l\-:ﬂl:;gzl;ejhosphomum. Semi-stabi}ized or Inoderatsgl;nr;;zﬁl\}':eﬁ ylides like
D oitE e 245;3(1)_&;0ntr01 of the olefination process which has been ai osphorous ylides
form ationg of die B QREEYER to f?ur delight, both the halides resulted inc?};gmzed problem
o o isomers 0 olefin products over Z- isomers indi e_predominam
ereose_cctmty of the reaction. Thus our protocol offers a indicating excellent
economical and neat synthetic route for Wittig olefination Witrlil E?gelrgg-efﬁcient, e
1 E- selectivity and

excellent yield.

7.2 Experimental section

rials and methods
d without further purification Th
. The alcohols and ald
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prolcedure.]g\/lilestones’ S%;rt Ssﬁfl_}ﬁs::;;rom Merck India
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7.3 Result and discussion

Here we report a solid-state solvent-free one pot method for Wittig reaction of aldehyde,
triphenylphosphine and a-halo esters or benzyl halides using basic alumina as a
heterogeneous base catalyst-support. The reaction was conducted under microwave
irradiation which affords corresponding alkenes in good to excellent yields with attractive
E- selectivity. At the outset, to optimize the reaction condition giving best results, we
nvestigated the Wittig reaction of benzaldehyde, ethyl chloroacetate (ECA) and
triphenylphosphine (TPP) as a pilot protocol. The optimization of the stoichiometric ratio,
catalyst loading, temperature and reaction time were performed in Figure 7.1-7.3. The
overall results are illustrated in Table 7.1. After varying different parameters, an optimized
condition of the reaction was achieved which resulted maximum isolated yield (93%) of
desired olefin product within only 3 minutes.

7.3.1 Optimizations of catalyst-support loading

The catalyst loading was also optimized to reach the best possible yield (Table 7.1, Entry
10-15). For this, several reactions sets having various catalyst loadings were compared
against the optimized ratio of reactants assisted by microwave heating at 90 °C. This
investigation showed that 3 g (28.3 eqv) of basic alumina was the optimum amount of
catalyst-support which gave 93% yield of the synthesized olefin (Table 7.1, Entry 14). When
the amount of alumina exceeded this limit the reaction was observed to be slowed down
slightly (Table 7.1, Entry 15). This might be attributed to the more distant active sites due to
the high amount of catalysts which made it difficult to interact with substrates,
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FIGURE 7.1 Effect of catalyst loading on % conversion

7.3.2 Optimization of temperature
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maximum conversion attained at 30 minutes after which no appreciable change in yield was
noticed.

TABLE 7.1 Optimisation of stoichiometric ratio of reactants’

Entry  Benzaldehyde: ECA: TPP  Catalyst loading Temperature  Time (min) Yield (%)

(8) (°0) (Isolated)
1 I:1:1 3g 90°C 30 65
2 1:1.2:1 3g 90 °C 30 70
3 1:1.2:12 3g 90 °C 30 83
4 1:15:1.2 g 90 °C 30 88
6 1:1.6:1.2 3¢ 90°C 30 90
7 1: 1.6: 1.3 3¢ 90 °C 30 93
8 1:2:13 3g 90 °C 30 89
9 11: 1.6: 1.6 3g 90 °C 30 89
10 1:1.6:1.3 lg 90 °C 30 74
11 1:1.6:1.3 1.5¢g 90 °C 30 81
12 1:1.6:1.3 2g 90 °C 30 86
13 1:1.6:1.3 25¢g 90 °C 30 90
14 1:1.6:1.3 3g 90 °C 30 93
15 1:1.6:1.3 35¢g 90 °C 30 91
16 1:1.6:1.3 lg 70°C 30 83
17 1:1.6:13 3g 80 °C 30 85
18 1:1.6:1.3 3g 90 °C 30 93
19 1:1.6:1.3 3g 100 °C 30 88
20 1:1.6:1.3 3g 90 °C 10 75
21 1: 1.6: 1.3 3g 90 °C 20 84
22 1: 1.6: 1.3 3g 90 °C 30 93
23 1:1.6:1.3 3g 90 °C 40 93

Finally, after optimization of the reaction conditions, we
the Wittig reaction of various substituents of aldehyde assisted
using different halides to understand the scope and limitatio
synthesize a good amount of olefin products. It was observed th
i.e. carbonyl group in the substrate, influences the re
reaction process. Aldehyde containing the electron-w

55 minutes to form the product (Table 7.2, Entry 4-7). But when the reaction were carried
out with the aldehydes containing the electron-donati

ng group or neutral aromatic aldehyde,
comparatively lesser time were required for complete conversion to olefin (Table 7.2, Entry
1-3). It was also observed that the selectivity of the product was high in case of para
substituted aromatic aldehydes (Table 7.2, Entry 2, 4, 6, and 9), while it is less in ortho- and
meta- substituents (Table 7.2, Entry 3,5, 7 and 10). ‘

extended the protocol for
by microwave-irradiation
ns of the reaction and to
at the nature of the reactant
action time required to complete the
ithdrawing group required nearly 45-

‘The halide we commonly used in the reaction (ethyl 2-chloroacetate) led to the
formation of stabilized ylide in-situ and thereby resulting E-isomers of olefin product formed
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predominantly. The scope of semi-stabilized ylide was also investigated by using 1-bromo-

4-(bromomethy])benzenc as a halide source in the reaction (Table 7.2, Entries 9 and 10)

This also resulted in the excellent predominance of the E-isomer over Z- isomer confirmin
of this protocol. g

attractive stereo-selectivity

TABLE 7.2 Witlig reaction of various aromatic aldehydes with halides and triphenylphosphine under solvent-

free microwave heating conditions”
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The mechanism proposed for the one-pot Wittig reaction protocol is shown in Scheme 7.5.
It is postulated that the basic sites of alumina abstracts the —CHa proton of phosphonium salt
which then activates the aldehyde to form the cyclic oxaphosphetane ring. This cyclic
intermediate then cleaves fo yield the desired Wittig olefinic product and triphenylphosphine
oxide as by-product. The halide ion of phosphonium salt regenerates the catalyst by
abstracting the proton in its basic site to form hydrochloric acid.

O Basic Al,0, - Ph P@ ('c?; ©
PPhy + Cl._C. @,,_,-—:——%/ “oet ¥ ©
_,}[_0 H
Y5
—AI-0
R-CHO
—AlI-OH™©
6 Cl
HCI s
—AI-0 e 9
PhsP_C. o,
COOEt oy
AJ
R
Olefin
+
Ph,P=0 ®
By product OJ'—PPhs 90 PPh; o
C Il
B |
& - ¢\ ~~C-OEt
7\ H
R COOEt H
Oxaphosphetane

SCHEME 7.5 Proposed mechanism for the solid-state one-pot Wittig reaction

7.3.5 Spectroscopic data of synthesized compounds

(E)-Ethyl 3-(2-hydr0xyphenyl)acrylate (Table 7.2, Entry 3)

'H NMR (400 MHz, CDCls, TMS): § 1.34 (3H, t, J=2.8Hz), 4.14 (2H, m), 6.66 (1H, d, J=12.8Hz), 6.89 (2H

m), 7.21 (1H, t, J=5.2Hz), 7.43 (1H, d, J=5.2Hz), 7.82 (1H, s), 8.08 (1H, d, J=

12.8Hz); *C NMR: § 14.26,
60.80,116.41, 117.59, 120.38, 121.66,129.18, 131.5,, 141.13, 155.99. 168 §.

(E)-Ethyl 3-(2-chlorophenyl)acry]ate (Table 7.2, Entry 5)

'H NMR(400 MHz, CDCl;, TMS): §1.28 (3H, t, J=7.2Hz), 4.21(2H, m)
7.36 (2H, m), 7.51 (1H, d, J=12 Hz), 8.02(1H, d, J=16Hz); '
» 12945, 130.16, 130.76, 130.97, 140.37, 166.52.

» 6.36 (1H, d, 16Hz), 7.22 (1H, m),
‘CNMR: § 14.26, 60.80, 120.38, 127.06, 127.62,

(E)-Ethyl 3~(4-bmmophenyl)acrylate (Table 7.2, Entry 6)
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'H NMR(400 a
, O. , &y JT Z), 7.67 (]H, d

J=16Hz), 1.7 =
), 7.76 (2H, d, 1=7.6Hz), 815 (1H, d, J=1.2Hz), 8.17 (1H, d, J=12Hz); °C NMR: 5
o : 8 14.31, 60.62

118.97, 124.44, 129.41, 132.108, 133.36, 143.16, 166.68.

(E)-Ethyl 3-(3-bromophenyl)acrylate (Table 7.2, Entry 7)

TMS): $1.26 3H, 1, J=7.2Hz), 4.19 (2H,m), 5.91(1H, d, J=12.8Hz), 6.35 (1H

Hz), 7.17(1H, t, J=7.6Hz), 7.35(1H, t, J=7.6Hz), 7.42(1H, d, J=8) ,7 .58 Q o
. a, J=38), 1. H, s);

61, 135.42, 141.67, 148.68, 166.13. ”

'H NMR(400 MHz, CDCls,

J=16Hz), 6.79 (1H, d, J=12.4
13C NMR: 814.20, 60.94, 121.46, 122.40, 124.48, 129.96, 133

ostyryl)-4-chlorobenzene (Table 7.2, Entry 9)

(E)-1-(4-Brom

TMiS): 57.00 (1H, d,J=4.4H2),7.064 (1H, d, 1=4 8112}, 7328 (2H. d.J
(2, d, J=2H2), 741001H, & 7252 7.422 (1H, d, J=1 6Hz’)- ’ucl .y
12091, 133.71, 135.45, 136.16. PO NMR:

'H NMR (400 MHz, CDCls,

1.6Hz), 7405

7.344 (2H, d, )=
,128.31, 128.78, . 129.85,

5121.82, 127.92, 128.21.
0-2-(4-bromostyryl)benzene (Table 7.2, Entry 10)
TMS): & 6.97 (1H, d, j=2.39Hz), 7.05 (1H, d, J=6.8Hz), 7.23 (1H,d, J=0
=2.4Hz), 7.36 (7.36(2H, d, J=2Hz), 7.43 (2H, d, J=2 4Hz)"7, 53 :HZ)'
ol - . . H
7.30. 127.74, 128.16,_128.27, , 130.83, 131.28, 131.49 ]31’d,
B T .66,

(E)-1-brom
DCla.
7.33 (1H, d,J
126.85. 12

IH NMR (400 MHz, C
(1H, d. j=1.67H2),
13¢ NMR: 512142, .

7.25
J=1.2H2).
133.27, 135.36.

7.4 Conclusion
In conclusion; we repe ef! rpethod for the synthesis of olefins und
mild condition- conventlonal Wltt_lg r.eactlon in most cases is very tedious d oy
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FIGURE 7.6 '"H NMR spectrum of (E)-ethyl 3-(2-ch10rophenyl)acrylate (Table 7.2, Entry 5)

E/Z ratio calculation: E= (——) x100%=91% Z‘( ) x100%=92,

156




—"r"__,..r---"-'-_’r-

FIGURE 7.8

E/Z ratio ca]cu]atlon
100%, 7=0

"'\—L_b.-..

- .... ,n-- .--- 1"“""""'7
8

¥

e ¥
4

o siz3 —
i, i | e
OEt I P17
B;/@\G/L !( W W///
[f
| ,
(E) isomer K
(Z) imotnel.
110 integration vaiue
negligivie i ‘
-
jL & TTeE e J ,ff
| (1“ iy 313

bromophenyl)acrylate (Table 7.2, Entry )

10 ’
trum of (E)- -ethyl 3-(4-

I1{ NMR spec

B T

157




[

A [ N |
L vaf_._,,r -

12 1 10

FIGURE 7.10 'H NMR of (E)-ethyl 3-(3-bromophenyl)acrylate (Table 7.2, Entry 7)
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FIGURE 7.11 '*C NMR of (E)-ethyl 3-(3-bromophenyl)acrylate (Table 7.2, Entry 7)
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FIGURE 7.14 'H NMR of (E)-1-(2-bromophenyl)-2-(4-bromophenyl)ethane (Table 7.2, Entry
10).
E/Z ratio calculation:
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FIGURE 7.15 '"H NMR of (E)-1-(2-bromophenyl)-2-(4

-bromophenyl)ethane (Table 7.2, Entry 10).
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tetrahydropyranylation/ depyranylation reactions of alcohols as well as ultrasonic-assi§ted
solketal synthesis by acetalization of glycerol. Solvent free route for tetrahydropyranylation/
depyranylation of alcohols using magnetically retrievable FSS catalyst offers an easy, hurd!e
free protocol for protectiop/deprotection of alcohols. Also, as per our knowledge, magnet!c
MNP catalyst was employed for the first time to develop a green and cost-effective synthetic

protocol for the production of sol-ketal which resulted excellent yield and selectivity within
only 15 minutes.

Chapter 4 demonstrated chemoselective tetrahydropyranylation/ depyranylation of
alcohols and phenols using mesoporous phenolsulfonic acid formaldehyde resins (PAFR) as
catalyst under room temperature. The catalyst offered noticeable heterogeneity and
recyclability. The protocol avoids the use of any hazardous solvent and successfully

generalized for phenc. , tertiary alcohols, large molecules like cholesterol which otherwise
difficult to achieve.

In Chapter 5, a novel biowaste-derived, highly efficient solid-base catalyst was
established from Musa acuminata (banana) peel ash (MAPA) and characterized its
properties with various analytical techniques. The catalyst offered excellent activity in
synthesis of nitroaldols via Henry reactions. It was recorded as the first report of exploitation
of biowaste-derived heterogeneous catalyst in C-C bond formation reaction. Room
temperature, solvent-free protocol, recyclability up to 10 catalytic cycle and amenability to
scale-up the protocol adds perk to the green synthetic method.

Chapter 6 established Musa acuminata banana trunk ash (MBTA) as a novel, cost
and labour effective green solid base catalyst. The solid base catalyst MBTA was
characterized by various analytical techniques to have knowledge about its composition,
morphology and structure. The catalyst was tested for its catalytic activity in

transesterification reaction of soybean oil which resulted a sustainable biodiesel production
method in room temperature.

In Chapter 7, a one-pot, solvent-free protocol was presented for Wittig reaction under
microwave irradiation. Commercially available basic alumina was used as a base catalyst-
support in the reaction. It presented an energy and step-efficient, neat synthetic route for
Wittig Olefination resulting E-selectivity up to 100%.

8.2 Future scope of research work

The major challenge of heterogeneous catalysis in present day scenario is to cope up with
the high catalytic activity of homogeneous catalysis making best use of the recyclable nature
of heterogeneous catalysts. Therefore designing new and advanta
catalyst is in high demand to design strategic catalytic paths for wi
reactions. Synthesis and applications of environment-friendly,
catalysts should be encouraged to deal with the toxicity associ
In regard to the catalysts used in this research work, followin

* Magnetic nanocatal
efficient, for which

geous heterogeneous
de range of chemical
benign, green heterogeneous
ated with chemical processes.
g points can be mentioned-

ysts can make': any synthetic protocol much simple and time-
more magnetic nano-catalyzed protocols are desirable in near
future to avoid wast

e of'hazardous. solvents in purification processes. FSS has a wide
scope to be employed in synthesis of organic compounds with or without further
modifications.

As an ion exchange resin, PAFR catalyst showed good activity towards
protection/deprotection of wide range of hydr:

de . 0Xy compounds. The heterogeneity and
hydrophobicity of PAFR resin can be exploited for many in-water organic reactions.
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g demand of biomass-derived catalysts and their confined

= Witnessing the ongoin
applications in biofuel production area, it is comprehended that there is a vast
scope

to design efficient biow_aste-based heterogeneous catalysts and elaborate thei
thetically all-important organic rgactions for fine chemi:;li

applications into syn
production which has hardly been tried before. The bio-derived catalyst MAPA and
an

MABTA can be excellent green catalysts for man
. e ! y base-catalyzed . )
to their natural sustainability, benign, abundant nature and m};zst i;eaC;ltons owing
simple preparation method. portantly very
= Developing effective as well as green methodologies for catalyti
. . . ytic s :
tain sustainability. Therefore minimizing or a)\,/zti]:l?i: 1?:: de
0

much attention t0 main
hazardous solvents during reactions should be one’s prime motive. These eff
’ efiorts

might encourage other researchers to extend the applications of the catalytic syst
ems

discussed here which will enhance the growth of the domain.
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