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INTRODUCTION :

—

.

1.1 Priliminaries °

The word "Topology® is derived trom the Greek word

Fortog . which means "place", "Position"™ or ‘"Space®.
Accordingly. topolegy is the science of space, it analyses
the space concent @nd investigate the properties or venera.

spaces. It is therefors & suhdiscipline ot seometry. This

dows  nol weep 1F from being in close and touithtul relation
o analysis anmd alsgEbra It provides analyvsis  with

ation : it receives, on the

9.&*0"“9*--‘1"3 f onnd ather hanid,

fa1 stimnli reom analysis (c.f. tunctional

pusent 1a analvsis).

algebra as the fundamental hasic

From and auxiliary
discipline ot mathemstics, it takes essential helrning
material (®-2- finesr algebra. Aroup and module theory) .o
gives it, in turn, important new result (e.g. homological

ebral. However, the proper yoal ot topoiogy it always the

acquisiton ot zeometric knowledge,

The dictionary meaning ot topology is "use 107

»e : - n .
place name &5 an aid to memory" or "hy associating thinss

with parficular town or region’.



[t is Riemann who should be considered as the
creator of topologYy: as of so many other braches of modern
mathematics. He Was the first to attempt to formulate the

notion of a topological space ; he conceived the idea of an

autonomous theory of such spaces ; he defined invariants
{the "Betti Numbers") which were to play a pre-eminent
part in the later development of topology and he was the

first to apply topology to analysis (periods of abelian
integrals). Now-a-days the word "topology" is being commonly
used and getting popularity day by day in ‘the field of
nodern mathematics: The most of the development of topology

took place since 1900. In phe recent times, topology has

been firmly established as one of the basic disciplines of
pure mathematics. It has also greatly stimulated the
growth ©of abstract algebra. As things stands today,much of
the modern pure mathematics must remain a closed book to the

person who does not acquire a working knowledge of at least

the elements of topology.
There are many domains in the broad field of

topology of which of the following are only few. the

homology 2and cohomology theory of the examples, and of more

general spaces as well, the dimension theory, the theory of

4ifferentiable and Riemannian manifolds and Lie groups, fhe
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theory of continuous curves, the theory of Branch and
Hilbert gspaces and their operators and the Branch algebras

and abstract harmonic analysis on lIocally compact groups.

There are two types of topology, algebraic
topology and point set topology. The algebraic topology in-
-cludes. the use of algebraic methods, while point set
topology is the study of sets as accumulations of points and
deserving sets in terms of topological Properties such as
being open, closed, compact. connected, normal, regular and

complete etc., including the nets and filters.

Topology is alsn known as ANALYSIS-CITUS. It is a

branch of mathematics treating the Properties of 3 space

that are invariant under homeomorphisms, A homeomorphism is

a continuous one-fo-one tranformation whose inverse is also
continuous. It deals with properties of geometrical figures,
properties that do not change even though the figures

themselves undergo change and such Properties of spaces are

known as the invariant properties,

For illustration, we take anp example - [f we have

a very elastic or approximately Perfectly elastic sheet of

rubber and draw some geometrical figures on it, without

cutting or tearing the sheet if it is allowed to stretceh snd
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bend, then it is remarkable that difference between any two
points on unstretched form, may be made larger at will, but
the path between the two points remains such that it does
not cross itself., whatever mode of stretching or bending is
adopted. Similarly by a careful stretching an angle of 20’
on an unstretched sheet may be changed to become 60° . These
sizes of the angles betwen any two points have no
consideration in topology, but it is the path betwen the two
points, which is known as arc and given due consideration in
topology.

For further illustration. if we stretch a rubber

band and bend it within in elastic limits it forms a closed
circwit. Formation of a closed circuit is an intrinsic

the rubber band. Let us have a Jook at the

L)

property of

shapes of a rubber band

" | \ ; \
;\ \ i\
i Ve ~ \
N - “
L—"’__—_—__ L-*“‘————
(i) (ii) (iii) Cio)
(i, tiiy), (iii) and (iy)

are some of the shapes

obtained when a rubber band is stretched within its elastic

limit.
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Let us draw a closed surface, say a triangle on a

thin sheet of rubber, with a dot inside.

Rubber sheet

Now, let us stretch the rubber sheet in the

following ways and twist the rubbep Sheet

/f

i | N .
LN . — \ .
§ / (..-\\ - “
e N o s :
.v/ ~ .. A

(v) ; o

(vi) \

Ny

Triangle ©0n the sheet wjj) undergo traﬁsformation

indicated on the stretched sheets jp the above (v) ang (vi)

figures.

In this way in whatever Manner we stretch there is
one common feature in al)l such tranSformations of the rubber

sheet - In the figures (v) and (v the arrows indicated the

directions in which the original Tubber gheet is stretched

dot inside the triangle remains 8lways inside even after
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stretching in whatever manner we want to. In other way we
say that the location of the dot is an invariant. In oather
word, containment of dot within the triangle 1is an

invariant.

From the topological point of view. a circle, an

ellipse, a polygon and indeed any complete and uncrossed

line arcequivalent. The curve that does not cross itself is a

simple curve, which divides the plane surface into two

regions. One region centains all the points inside the curve

and the other contains all the points outside the curve.
Therefore, in topology the concept of space is

considered to be as genral as possible ; it should comprise

everything which in the widest sense of the word deserves

the same space. To this concept belong, besides the
fundamental brs\siC:3 models (the ordinary three dimensional
Euclidean space R and the n-dimensional space Rn. with
n=1,2,3,-----""" and all subsets of Rn)' the infinite

dimensional Hilbert space, the non-Euclidean spaces and the

spaces of Riemannian Geometry, as wel]l

as more general
3

n
set of ellipsoidsin R , the phase spaces in physics, matrix

spaces and function spaces, and many other more general

spaceswhich will not be described here, Naturally, it is not
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a matter here of the particular properties of one or another
of these examples, but rather of the characteristic
properties common to all these spaces. Since topology
strives for the most penetrating analysis possible of the
space concept, it has not only mathematical, but also
philosophical characteristicgl(e. g., concerning the theory of
cognition), especially in the fundamental portions. Whereas

a much discussed classical philosophical teaching (caf. 1.
3
Kant. 1724-1804) asserts that the Euclidean geometry of R

is the necessary form of human space perception.

The point of departure and the methodg of topology

as well as its relations to its neighbour disciplines can be

indicated by an especially important examples, viz., the

of real numbers. which certainily js of

.domain fundamental

importance for many other portions of mathematics. Real

can be added and multiplied angd the

numbers laws which

addition and multiplication obey can be derjved from fewer

| aws., the so called ftield layg,

basicC Algebra investigates

basic laws and their consequences.

these It considers more

general systems which are defined automatically and in which

combinﬁﬁ operations similar to addition and multiplication

with the same or similar b3sic rules as the axioms a1

present. Thus. one arrives at the concepts of field, ring,

has
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group and others. and the theory of these algebraic
structures. Topology 1is not interested, in the combining
operations of the real numbers or their generalisations. It

directs its attention more towards those properties which

the real number have, say, due to the fact that the
numerical sequence 1, 1/2, 1/3., ---------- has the limit
zero. It deals with the concepts of neighbourhood proximity

or the property of being neighbouring, openness or closeness
of sets of real numbers, continuty of real valued functions,
and similar concepts. Fromamong these concept, it choose the

simplest possibm-and the least number possible are chosen as

arrives at the fundamental

axioms. Thus, ©One concept of a

general topologecal Space, entirely analogous to the abnve

described procedure 1n algebra.
The theory or topological space or as it is ~alled

point set or general topology has become one of the

elementary puilding blocks underlying diverse branches of

mathematics. Its concepts and methods have enriched numerous

other fietds of mathematics like functional analysis,

a]gebraic and differential geometries ang given impetus to

their future development. For these reasons topological

structures are considered to be ong of those few basic

structures which gives acoess Lo oo mothewma .ol

research.
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It is difficult to decide the precise time. when
the development of topology as a subject in its own right
began, problems of topological nature were considered by
Euler and Gauss. Frechet's initiated the study of metric

spaces in 1906 in his Doctoral thesis [ Frechet, M. Sur

Quelques points du calcul fonctionnel, Rendiconti dipalermo

22 (1906) 1-74).



1.2. SOME IMPORTANT DEFINITIONS AND RESULTS |INCORPORATED

INTO THI1S DISSERTATION

1.2.1 : Topologies

A topology on a set X is a structure given by a
set T of subsets of X having the following three properties

called axioms of topology :

(i) The set ¥ and the empty set ¢ are sets of T.

(ii) Every union of sets of T is a set of T.
(iii) Every finite intersection of sets of T is a
set of T.

The sets ©of T are called open sets of the topology

defined by T on X.

1.2.2 : Topological Spaces

A topological space is 3 set endowed with a
topology. i.@., when a topology T has been defined on a set

¥, the pair (¥,T) is said to be a topological space.

The elements of a tOPOIOgical space are often

cal] led points.

1.2.3. : Trivial topologies

(i) Discrete topology : Let X be any set and D be the

collection of all Subsets of X. Then D is a
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topology for X called the Discrete topology and

the pair (X,D) is called a discrete topological
space.
(ii) Lﬂﬁiﬁﬁlﬁte topology ¢ Let X be any set. Then the
collection 1 = {¢ , X ) is always a topology for
% called the indiscrete topology. The pair (X, [) is called

an indiscrete topological space.
1.2.4. : Comparison of topologies

Let T, and T be two topologies for a set X. We

say that T, is coarser or weaker or smaller than T, or that

T, is finer or stronger or larger than T, iff T, C T, .

1¢ either T, & Ty or To & T, we say that the

topologies T, and Ty are comparable. 1f T, ¢ T2 and
Ty ¢ T, , then we S3&y that Ty and T, are not comparable.
For any set X, the indiscrets topology | is the

coarsest topology and the discrete topology D is the finest

topol OgY-

1.2.5. Usual topology

Let R denote the set of real numbers. We define a

col lection T of subsets of R as follows :



A subset U of R is in T iff for an arbitrarily
given point u € U, there exists a positive real number
such that » real number x is in Uif | x - ut <&, . Then

this collection T forms a topology in R which is known as

usual topology in R and the pair (R, i) is a usnal

topolngical space.

1.2.6. : Co-finite or finite complement topology

Let % be any set and let T be the collection of

all those subsets of X whose complements are finite together

with the empty set. i.e.. a subset A of ¥ belongs to T iff A

is empty or A7 1S finite. Then T is a topology for X called

the co-finite topolegy or the finite complemet topology.

1.2.7. & Co-countable topology

Let X be a set and let T consists of all those

of % whose complements are countable sets together

subsets
with the empty set. Then T is a topology for X called the

Co-countable topology.

1,2.8. @ Intersection and Union of topologies

Let X = { a, b, ¢ }. Consider two topdlogies T,

and T, for ¥ defined as follow§

T, = (6., Ca), X))

T. = (¢ . b1, X
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then T, U T, =(0¢ , a1}, (b1}, X}
which is not a topology. since

{(a) U {b)Y=~{(a b} & T U T, .

Thus, union of topologies is not necessarily a
topology on X. However, the intersection of any collection

of topologies is 2 topology for X.

1.2.9. : Metric topolgy

Let (%¥. d) be a metric space and let Ty consists
of @ and all those subsets G of X having the property that

to each xeG there exists r > O such that the open sphere

S(X. r) iS C'ontained in G. Then Td iS a topology fOt‘ x and

is said to be topolesy induced by the metric d.

1.2.10. : metrizable topological spaces

A metric on a set X is said to be compatible with
a topology T ©n ¥ if the topology defined by this metric

with T . A topological Space is said

coincides to be

metrizable if there exists a metric on X compatible with the

topologY for ¥

1.2.11. ¢ Neighbourhoods

Let ¥ bedtopological space and A be any subset of

{ . A neighbourhood of A is any subset of X which contains
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an open set containing A . The neighbourhood of a subset

"{ «x ) consisting of a single point is also called

neighbourhood of the point x.

For example, if ¥ = C{a, b, ¢c. p 1} and T be a

topology on X as T = (g, L boc . {2 pl. (a c pl,

{ cy, X ).

Also A = 2@ b, pl < &

Open set containing P is { a, p )} which is such

that pe ( a, P! c ( a, b, p}

is the neighbourhood of P .

Hence A

1.2.12. E;gggziiéﬁ.gi.Qgighbourhoods

Ler X be a topological space and for
each X < X let N(x) be the collection of all
neighboUFhOOds of X . Then

That is, every point x has at least one

neighbourhood-

N : N & N(x) => x & N

That is, every neighbourhood of x contains x.
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N2 . N & Nix) , M > N =2 M & Nix)

That is, every set containing a neighbourhond ot x

is a neighbourhood of x.

N, : N & N(x) . M « N(x) =2 NN Me N(x)

of x is a neighbodrhood of x.

N4 . Ne Nix) =>3 M & N(x) such that M < N and

Me Niy) . vy e M

That 1S, if N is a neighbourhood of x , then

there exists & neighbourhood M of x which is a subset of N

such that M is 2 neighbourhnod of each of its points.

1.2.13. Eggggmgﬂﬁéi system of neighbourhoods

In a topological space ¥ , 3 fundamental system of

neigthUPhOOds of a point x (respectively of a subset A of

x) is any set E of neighbourhoods of x (respectively A}

such that for each neighbourhood V  of x (respectively A)

there is 2 neighbourhood VW & E such that W ¢ V.

if E is 3 fundamental system of neighbourhoods of

a gystem A of X% , then every finite intersection of sets

of E contains a set of E .
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For example, on the rational line @ , the set of

all open intervals containing a point x is a fundamental.

system of neighbourhoods of this point.

1.2.14. : Bas@ of a topology

Let (¥, T) be a topological space. A collection

B(x) of subsets of ¥ is known to be a Base for topology T
iff
(i) Bi(x) T
(ii) Each member of T can be expressed as the union of

the members of B(x).

For example, let
x={1,2,3]
r = o U1, U2}, 03y, (1,2, 1, 3),

(2, 33 %)

is a topolongy on X.

AlsO Btx) = { (p , | 1, 3 Y, | 2, 3 )}, X )

Now B(x) is a subset of T and union of members of

B(x) i.e. ¢ u L1, 31V 2, 3)rux%x = X is a member

of T which are the conditions for a gset to be a base for a

topOlOgy. But B(x) is not a topology as { 1, 3 n{ ) 3 )

- {3} 9é B(x). Therefore B{(x) is not a base.
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8 1, {t 3. 4 1, { 1, 2. 8 ) ¥

Also, Bix) = { &, L 1 ).

Here B(x) C T and each member of T is the Unmin

of members of B(x), sSuch as. ¢=0¢ U ¢ etec. Since 4 is

the subset of everly seft and sn 1s ot B(x) and

{13y = 6 u £ 3 = H U3,

{ 1, 31 = 4 1 y U3y 03, 4 ) = {3 )y g B de §
(1, 2, 3y = (1 } U3y uU 1,2, 33

{1, 3, 4} = £ 1 U3 Ut 3, 4 )

(3, 2y B, 4 3 % 1y w43y U L 3, 4 )y ¢ 1, 5. 3

Hence B(x) is a base for T,

[§ X is & topological space and B(x) is a Subset

ts © ) ( .
of ¥. The elementsof Elx) are open sets and these are Kknown

as basic open me e

1,2.15. : Local base of a topological space

By @& local base or a neighbourhood base, of

Ty

space X at a point x € #, we mean a collection By of
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Neighbourhoods of x in ¥ such that every neighbourhood or x

in X contains & member of BX . The menbers of a given local

base B, of ¥ at the point X & ¥ is ecalled the basic

neighbourhoods of x in X¥.
Example of Local base
Consider 2 real line R and any p &€ R for each

positive real number &> 0. the set

Né(p)z{xeR' 'X-Pl’\'cg.}

is called the & - neighbourhood of p in R. Let

5. . L S - .. . - - be any sequence of
&, ©2 .

positive real pumbers converging to O " then the
collection { N5: tp) ¢+ 1 = 1o & 30 mmeomo } is a loecal

base of R at Pr

\ 2.16. : gupbase of a topologleal space

Let (%, T) be a topological space. A collection

B¥ of subsels of X is called a Sub-base for the topology T

iff 3“(: T and finite intersection of members of Bk £ orms

a base for T.

2 .
(t follows that B" is a Sub-base for T iff

ouBTY membet of T 15 the union af finite intersections of

-+
members of B



(19)

be a topology on & where X

Then the collection

B# = ( { a, d ). { a, ¢} } is a Sub-base for T
since the gamily B of finite intersections of g& is
given by,

g = ( (23 ), ( a, ¢ . { a, d 1} )

which is 2 base for T.

1.2.17. ngggg_ggigig_g_topological space

[n @ topnlogical space X, the complements of the
open sets of x are closed sets.
For Qxample' let X = { a, b, ¢ ) and let

T = (P tal, | bv‘° }, ¥ ) be a topology on ¥

since

jt follows that the closed sets of X are

g, { b, cJ, {2 } and &

1.2.18 + Gg r E and Borel sets ._

A subset G of a topological space % is called a

G¢§ iff it is a countable intersection of open sets and a
subset F is catled a F,  iff 1t is a countable union of

alnsed sats.



Borel

sets

(20)

The family of Borel

sets in a topological

space X

. \
is the smallest family of sets C? with the following
(.

properties

(i)

(ii)

(iii)

1.2.19.

space iff
Example :
Let T =

topology

closed sets of X

open and c

112'20' :

subsets of

%; contains the open set.

Countable intersection of elements of

@J .

Complements of elements of ‘g belongs

to

Door Space

A topological space ({, T) is said

every subset of X is either open or

¢ ¢ . { b, { a, b, { b, ¢
on X where x = { ga, b, c
are X, { a, c ), { c ),
Hence all the subsets of

onsequently (X, T) is a door space.

characterisation

p-ALA e OSSR A RN

of a topological

Y, X}

X are either closed

©

belongs

to

af

to bed Door

closed.

be a

. Then the

tad), 4§ .

or

space in terms

of closed sets
Let X be

a non-empty set and J,

X such that,

a family of



(21)

F:@erx < F
F, : Fp » Fp € F =>F U FyeF

F,: FRo€ F ¥ deA=>NI{F, :)en? € F

Then there exists a unique topology for X such

that the closed subsets of X are precisely the members of

F .

1.2.21. : Eirst gountable space

A topological space (X, T) is said to satisfy the
first axioms of countability if each point of X possesses a
countable local base. Such a topological space is said to be

first countable space.

Example : A discrete space (X, D) is first countable. In a
discrete space, every subset of x is open. In particular,
each singleton set { x}, x& X is open and so is a
neighbourhood of X, ﬁlso,every neighbourhood N of x must
be a Supersetl of { x }. Hence the collection { { x 1 )
consisting of the singleton neighbourhood { x } of x
constitutes 2 local base at x. But a collection consisting

of a single member-is countable. Hence thers exists a

countable bhase at each point of X.
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1.2.22. : Second countable spaces

Let (X, T) be a topological space. The space is
said to be second countable or to satisfy the second axiom

of countability iff there exixts a countable base for T.

For example, the usual topological space (R, U) is
second countable since the set of all open intervals ]r, s ”
where T, s are rational numbers, forms a countable

base for U .
1.2.23. : Limit points

Let A be subset of a topological space X. A
point x ¢ & is called a limit point or an accumulation
point or a cluster point of A iff every neighbourhood of x

contains a point of A other than x

1.2.24. pDerived set

The set of all limit points of a subset A of X
is called the derived set of A and shall be denoted by

D(A).

n
)
L

Example : Let X b, ¢ } and

let T ="C¢ , {a), (a, b}, (a cl, %) be

a topology on ¥ and A = { a, c )

Here a is not a limit point of A , since { a}
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is a neighbourhood of a which contains no point of A
other than a. But b is a limit point of A ., since open
neighbourhood of b are { a, b } and X , each of which
contains a point of A other than b. Also ¢ is a limit

point of A , since there are only two open neighbourhoods
of c , namely, { a, ¢} and X each of which contains a
point of A other than ¢. Since b , ¢ are limit points of

A, we have

ptA) = { b, c )}

1.2.25. : Adherent points

Let A be a subset of a topoldgical space ¥ and
let x € ¥. Then x is called an adherent point ( also
called contact point ) of A iff GQEPY neighbourhood of «x
contains a point ©of A. The set of all adherent points of

A is called the adherence of A and is denoted by AdhA.

1.2.26. ¢ Lg—g_l__é_t_.g_q_ and Perfect points 2

A point x is said to be an. isolated point of a
subset A of a topological space X if x pelongs to A but x
js not a 1imit point of A, i.e., there exists some
neigthUPhOOd N of x such that N contains no point of A

other than X. A closed set which has no isolated points

is said to be a perfect. . .
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it fol lows that an adherent point is either an
isolated point or a limit point of A. For if x 1is an

adherent point of A, then there are following two mutually

exclusive possibilities

(i) Every neighbourhood Nof x contains a point of A
other than x. In this case x is a limit point
of A.

(ii) For x € A and there is some neighbourhood of «x

which contains no point of A except x. In this

case x is an isolated point.

For example, let,

¥ =(a, b, c» dy e} and let

T

t ¢ , (bl {d, e}, (b, d, e}, {a, c, d, e}, X )

Then T is & topology on ¥. Ve consider the subset
A={b, c,.dl Then c is a limit point of A, Since the
open neighbourhoodsof ¢ are ( a, ¢, d, e } and ¥ each
of which contains & point of A other than c. But b is not
a limit point of A, since { b )} is an gpen neighbourhood of
b which contains  no point of Ao  gther than b.
Similarly, the other limit points of A are a, e. Hen;e

D(A) = { a, ¢, e}

Isolated points of A are b and d, since b, d
belongs to A, but are not limit points of A. The adherent

»

points of A are a, b, ¢, d, e.
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1.2.27. : Closure

Let (¥, T) be a topological space and A be a

>1

subset of X, i.e., Ac X. The -closure of A denoted by
is defined as the intersection of all closed supersets of A
i.e., the tntersection of all closed subsets of X which

contains A or symbolically,

A= N F
1

where ( F. ! i < 1) is the class of all closed
subsets of X which contain A.

Example : |If ¥ = 1,2,3,4,5} and

T = {‘¢ , X, (1,2}, (1,3}, (2,5}, (1,2,3), {1,2,5),
{1'2,3,5), {1}, (2) 1

Then T 1is & topology on X,

‘Let us consider A = {1,4) ~ y
Closed sets of X are X, & , (3,4,5), (2,4,5),

{1,3;4}9 f495)’ (3,41, (41, {2’8’4’5]’ {1)3’4s5}

Therefore, closure ofji.e.,

A Intersection of closed sets which contain A

AN 1,3,4) 0 (1,3,4,5)

{1, 3,4}
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1.2.28. : Closure operator and Kuratowski closure axioms

Let (X, T) be a topological space. A closure
operator on ¥ is a function C : P(X) --> P(X) satisfying
the following four conditions known as Kuratowski closure

axioms

(K,) cig) = &

(A)
(K;) A c C |
(Kg) C(A U B) = C(A) U C«(B)
(K) C(C(A)) = C(A)

Where A and B are any subsets of X.
The  topological space (X, T) then called

Kuratowski space-
1.2.29. : Interior points

In a topological space X, a point x is said to be
an interior point of a subset A ofxifAis a neighbourhood
of X. The set of interior points of A is called the

lnterior of A and it is denoted by Int(A) or by AO

"From the defination of neighbourhood, a point x

is interior point of A if there is an open set containesd
in A which contains x ; it follows that Int(A) is the

union of all the open sets contained in A, and hence is

S

the lar¢gest open set contained in A,
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For example,

£ % {1,2,3,4,5) and
T= ¢p , (1,2}, (1,3}, ({2,5), (1,2,3}), (1,2,5),

{1g2,315]’ {1}9 {2}1 x )

is a topology on X.

i

Let us consider A (1,3,4) & X
Union of open sets contained in A are

¢$ v (1.3 U {1} = {1,3)

1.2.30. : Interior operator

{n a topological space ¥, the interior operator
on X is a function i v PR)Y - P(X) satisfying

the following conditions, usually known as interior axioms

Iy : j(x) = X

I, i(A) < A

I, itA N B)Y = i(A) N i(B)
y iCitA)Y)Y = i(A)

where A and B are subsets of X.

1.2.31. : Exterior points and Exterior of a set

In a topological space X, evédry point which s
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interior to the complement of a set A - X is said to be an

exterior point of A, and the set of these points is called

the exterior of A in X.

A point x € X which is an exterior point of A is
therefore cahracterized bythe property that X has =

neighbourhood which does not meet A,

1.2.32. : Exterior operator

On a topological space X, The 'exterior operator

is a function e ¢ F(X) ---> FP(X) satisfying the following

conditions, usually known as exterior axioms

E' :' P(X) = ¢ ’ el ‘(5 ) = %
. y = af

E2 : el(A

E, : e(A) = el(e(Aa)) )

E : e(A U B) = e(A) N e(B)

Wwhere A and B are subsets of X.

1.2.33. : Frontier point and Frontier of a set

In a topological space X, 3 point x is said to
be a frontier point of a set A jif x lies in the
closure of A 3and in the closure of complement of A. The

set of frontier points of A is called the Frontier o AL
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The frontier of A is therefore the set

which is closed.

In a topological space {, if A,

subsets of ¥, ‘then

~

(i) A is said to be dense in B iff B < A

—

7
A MNOA,

B are

(ii) A is said to be dense in X or everywhere dense

iff A = X

1+ follows that A is everywhere dense iff every

point of X is an adherent point of A.

(iii) A is said to be nowhere dense or non-dense in X

— (o] .
iff (A ) = P, that is. iff the interior of the

(iv) A is said to be dense-in-itself iff

A C D(A)

i.e., iff A is the subset of derived set of A,

For example,

Let ¥ = { x, vy, 2} and

T

Lo, Uy, Gy, 23, ¢ x, v

be a topology on ¥.
If A = {(y, z 1) C X

Then closed sets of X are ¥, { x, z ),

{ z 1,

RS

}, X )
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Now closure of A = A = { X, ¥y, 2 } = %

So A is dense.
1.2.35. : Continuous functions

A mapping f of topological space into a
topological space Y is said to be continuous at a
point x & x if, given any neighbourhood V of §{(x) in VY.
there iz a neighbourhood u of X in X such
that flu)y < V.

A mapping f of a topological space X into a
topological space Y is said to be continuous on X or

simply continuous 3t every point of «,

For example, BVEry mapping of a discrete space

into a topological space is continuous,
1.2.36. : popen and closed mapp .ings

Let ¥, Y Dbe two topological spaces. A mapping

f : % --->y is open (respectively closed) if the image under

f of weach ope&n (respectively closed) sot of « is open
(respectively closed) in Y.
Example : If T, and T, are two topologies an

¥ and Y respectively, where



1 = (1,2,3}

T, = { ¢ , {2}, (1,3}, X1}

Y = { a, b 1}

T = (@, Lald, (b ¥Y)

2

and the function is

§ : (1, b), (2, a), (3, b)

Therefore, f({1,3)) = { b )} = "l"2

f({2}) = .
2 { a )} € 'T2

Hence the mapping f is open.
1.2.37. : Bicontinuous ma ings

. L] . e DIV m————

Let %, Y be two topological spaces. A mapping
£ 0+ X ---> Y is Dbicontinuous iff £ is open and
continuous.

For example, if T, = { ¢ , (a), (b,c), ¥ ) is
a topology on X = {a,b,c} and T2 = {(P , {2}, {x,y}, Y 1}
is a topology ©on Y = {x,y,z} then the mapping

f ¢ (a,z), (b,x),(c,¥y) {is a bicontinuous, as f
jg continuous as well as open.

f 1is continuous, since

-1 y -1 .
f [ ¢ ] = q> ’ f LYy = X

(31)
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£ 't tzr1 =(a) e T
-1

£ [ { x, y} I = {b, ¢} e Tl

1.8., the inverse image of every T2 -open set is

T' -open.

§ is open since,

frp) =%, flLadl = (2z)

£ ({b, ¢}l = {x, ¥y}, F(X) = Y

i.e., the image of every T, -open set is T2~open.
1.2.38. : Homeomorghism

Let X, Y be two topological spaces. A mapping

£ 1 X --=> Y is said to be a homeomorphism iff,

(i) ¢ 1is bijective, that is, f is one-one and onto.

=i

(ii) ¢ and f both are continuous.

1.2.39. : Homeomorphic spaces

A space X is said to be homeomorphic to another
space Y if there exists a homeomorphism of ¥ onto Y

and then Y is said to be a homeomorph of K.

If X is homsomorphic to Y, we can write ¥ &Y.
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1.2.40. : Topological property

A property of a topological space ¥ is said  to
be a topological property or " topological invariant or.
intrinsic qua'itative property if. each homeomorph of X has

that property whenever X has that property.

1.2.41. : Subspaces

Let A be a subset of 3 topological space £.
The topology induced on A by the topology of X is thaf
in which the open sets are the intersections with ’ A‘ of
open sets of X. The setAwith this topology is called a
subspace of ¥,

The topology induced on A jp known as Reletive

topology.
Example :
Let T = (@, (1), (3,4), (1,3,4), {2,3,4,5), X ) ve
s topology on X = { 1,2,3,4,5 )
Also, A = ( 1,4,5 ) cC ¥ Yo then have,.
¢ NA =¢ + XN A = a, Yy N A = (1)
(3,4 N A = (4}, (1,3,4)/] Ao . {,‘4,.
(2,3,4,5) N A = (4,5)
Hence Subspace of A = ¢ ® . (1), (ay, (1,4},

fa,' 1, A ).
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1.2.42. : Quotient topology

Let X be a topological space, R an equivalence
relation on X, Y = X/R the quotient set of X with
respect to the relation R and ¢ S A T ¢ is the
cannonical mapping. The finest topology on Y for which @
is continuous is called the quotient of the topology on Y
for which ¢ is continuous is called the gqoutient of the

topology of X by the relation R.

1.2.43. : guotient Spaces

Let X be topological spacé, R an equivalence
relation on R. The quotient space of ¥ by R 1is the
goutient set ¥/R with the topology which is the quotient

of the topology of X by the relation R.

1.2.44. : product topology

Let X and Y be two topological spaces. The
product topology X x Y is the topology having as basis, the
collection B of all sets of the forym v, where u is

the basis of the t?pology ¥ and v js the basis of the

topology Y.
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1.2.45, : Seperable spaces

A topological space X 1is said to be seperable if

some countable subsets of X is dense in X.

1.2.48. : Kolmogoroff Spaces ( Tp - spaces )

A topological space ¥ is said to be a Kolmogoroff

space if it satisfies the following conditions :

Given any two distinct pcints x; y of X there

is a neighbourhood of onedthese points which does not

contain the other. -
A Kolmogoroff space is also known as T, - space.

Example ¢ Every discrete space is a Kolmogoroff

1.2.47. : Frechet Spaces ( T - Spaces )

A topological space X is said to be Frechet
space or T, -space iff given any pair of distinct points
X and y of X t,hel‘e exists two open sets, one Containing
X but not y and the other containing y but not X,

{.e.. there exists open sets G and H sueh that x ~— G

but y¢G and ye H but xfé H.

a
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1.2.48. : Hausdorff Spaces (T, - spaces)

A topological space X is said to be a Hausdorff
space oOr seperated space or Tz.—space iff for every pair
of distinct points x, vy of X, there exists disjoint
neighbourhoods of X and Y that is, there &exist.

neighbourhoods N ©of x and M of y such that NNM = .

3 (¥, T) is a hausdorff space, then T is said

to be a Hausdorff topology for X.

gxample : (£ T =12 , Cal}, { b}, X ) bea topology on

{ where % = ( a b1},

Here, a2 € ( a), b g (b)) and (a)N (b} =¢

Hence (X, T) is a Hausdorff space.

1.2.49. 3 Regular s5paces

A topological space ¥ is said to be regular iff
¢or every closed set F C X and every point peg & with

pe F» there exists two open sets G and H such that

Fc G pe H and GNH =@

A regular T’ -space is called ‘I‘3 -space.
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1.2.50. : Normal sSpacses
A topological space X is said to be normal iff
tor every pair A, B of disjoint closed subsets of %

there exists open sets G and H such that
A C G, BCH and GNH =0

A normal T, -space is said to be a T4 —space.

Remark :

T,-spaces => T,-spaces => T,-spaces => T -space => T,-spaces

1.2.51. : completely Normal Spaces

A topological space X 'is said to be completely
Normal iff for any two seperated subsets A and B of X,

there exixts open sets G and H such that

A c G, Bc H and GNH = ¢
A complstely normal space which is also T,
i called a T5 - space.

1.2.52. Completely Regular Spaces

A topological space X s said to be Completely

regular iff for every closed subset F of & and every
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point x € ¥ - F, there exists a continuous function
§ : X ---» [ 0, 11 of R such that,

f(x) =0 and £ [F1 = { 1)

A completely regular T, -space is known as

Tychonoff space-

1.2.53, : Covers

Let be a2 topological space and A be a subset
of X. A collection { G; } is said to be cover of A if
A W Gio o IE the class ( G; )} belongs to the open sets of
the ;Opological space X, then { G; } will be known as the

open cover of A.

a o G it will be called the cover of the

topological space AL e RS

4, Gs } will be called the open cover of the
tgpological space X if { G; IAT= L

A covering { G, } is said te be simple if
¢ By 3 contains only a finite number of sets.

1

If 4 is @ covering of X and G, is another

covering of % such that G2 & G1 ) then (;2 TR

of G

subcovering !
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Example : If G, =] -n, n[ i ne 2 (set of integers) )
Then G, 1is an open covering of the sets of real

numbers R.

4

. +
Also, G, = (] -n. N (! ng 2 (set of positive integers) }

then G, < G, > hence G, is the subcovering of G, .

{.2.64. : Bagic and Sub-basic open govers

An open cover of A is called as Basic (Sub-

pasic) open cover if all the open sets of the cover are

contained in some given basel(sub-base),

1.2.55. : Comgact sots

A subset A of a topological space X is said to
be compact if every open cover of A is reducible to a

fginite _ cover or in other words if every open cover of

A contains a finite sub-cover.

1,2.56. ¢ compact Spaces

A topological space ¥ is said to be compact

iff every open cover of ¥ has a finite sub-cover.
' :
1.2.57. ¢ nggggg_Sub-sgacas

A subspace of a topological space, which is
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compact as a topological space in its own right is said to

be a compact sub-space.

1.2.58. : Finite Intersection Property ( FIP )

A collection { G, } of subsets of X is said

hav if the c i
to ave FIP i ollection { G} is non-empty and

each non-empty finite sub-collection of { G, )} has non

empty intersection.

Result ¢

A topological space X is compact iff every
class ( G; )} of closed subsets of X which satisfies the
finite intersection property has, © itself, a non-empty

jntersection.

1.2.598. ¢ Countably Compact Spaces

A topological space ¥ 1is said to be Countably

compact iff every countable open cover of X has a

ginite sub-cover:

1.2.60. gequentially Compact Spaces

A topological space X is sajid to be Sequentially

compact iff every sequence in X has a convergent Sub-

a

sequence.
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1.2.61. : Lindelof Spaces

A topological space X is said to be a Lindelof
space if every open covering of & contains a

countable covering of X, that is, every space with a

countable base is & Lindelof Space.

1.2.62. ¢ Locally Compact Spaces

A topological space & is locally compact 1if for

each point x € % and for each neighbourhood G of X

there is a compact neighbourhood V of x with Ve G

Remark :

Every compact space is locally compact, but the

converse is not true, for example, every discrete space is

locally compact, but not compact, if infinite

1.2.63. 3 Comgactifioation

(%, T) b t '
Let e a topological space and x¥ T )

t topological space sSuch that X is homeomorphic

#
b-s ace.of X . Th * # .
se su P en (X , T ) is called

be a compac

a compactification of ( %, T 1.
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1.2.84. : Refinement

Let { A, X € J} and {( Bg ! pe€ M) be

two coverings of a space X, where J and M are index

sets. { A} is said to refine (or be a refinement of)

{ Bp 1} for gach Ax there is some Bg with Ax < Bp

and  Ax ) o { Bp )} where A is a sign of refinement.

1.2.65. : Locally finite

A family A of sets in a space % is said to
be locally finite iff every point of X has a

neighbourhood which meets almost a finite number of members

of A .

1.2.66. : Paracompact Spaces

A topological space. X is said to be Paracompact

i§¢ every open cover of ¥ has a locally finite open
ref inement.
Remark °*¢

Every compact space is paracompact. Also, every
discrete space ¥ is paracompact, for the open covering
formed by all sets consisting of a single point of X |is
locally finite and is finite than every open covering of X.

-~
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1.2.67., 3 Countably Paracompact

A space X is countably paracompact iff every
countable open covering has a locally finite refinement.

A countably paracompact normal space ia «called

a binormal space.

1.2.68. ¢ Connected Spaces

pA_ALLAA At
A topological space K is said to be Connected
e union of two disjoint non*émpty open sets

if it is not th

¥ 1is connected and if A, B are two non-

I
empty open (respectively closed) subsets Cuen -
A U B = X then ANB #= 9
1.2.69. @ Connected Sets

A subset A of a topological space ¥ is said

to be connected set if the subspace A of % is

connected.

: Totally Disconnected Spaces

1.2.70.

A topological space (X, ™ is said to be
totally disco"nQCted iff for each pair x, y & ¥, there
exists 2 disconnection AUB of X such that A

Y

and Y € B.
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1.2.71. 3 Extremally Disconnected Space
A topological space X is called extremally

disconnected if Cl(U) 1is open 1in ¥ for svery open set

U of X, or, equivalently if every two disjoint open sets

of X have disjoint closures.

1.2.72. 3 Comgonents

The component of a point  of a topologibal space

X is the largest connected subset of X which contains

this point. The components of a subset A of X are the

components  of the points of A, relative to the

subspace A of X

Remarks

1. Every component of a topological space X is
closed.
2. [§ a space is connected, the component of each

point is the whole space.

[ a space KX is such that for each pair (x, y)
o points of X there is 3 connected set containing x and

then X is connected.
Y
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1.2.73. : Locally Connected Spaces

A topological space X is said to be locally
connected if each point of X has a fundamental system

of connected neighbourhoods.

1.2.74. : Pathwise connected

A space X is pathwise connected iff for any two
points X and y in X, there exists a continuous

function f : 1 ---> ¥ such that f(0) = x and f(1) = y,

such a function f is called a path from x to vy,

1.2.75. : Arcwise connected spaces

A space ¥ is arcwise connected iff for ant two
points X and y in X, there is g homomorphism
g o+ 1 === X such that f(0) = x apnd f(1) = vy, the
function f is called an arc from x o y.

4.2.76. @ Locally Pathwise Connected Spaces

A space X is locally pathwise connected iff each

point has a neighbourhood base consisting of pathwise

ConneCtEd sets.
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1.2.77. ¢ Directed sets

A set _/\. is directed iff there is a relation

> on A satisfying

(i) 7\}7\ for each N e A
(i) if N> A, and .3 7, then
7N>Ds .Y D D2 Nae A

(iii) If 7),’772 € A  there is some DseA with
27Ny, 7)227)3 ’

The relation :> is known as the

direction on AN

1.2.78. : Nets

A net in a set X is a function p : A ---> X
where A is some directed set, The point p( 7) ) is
denoted as X7 °

A subnet of a net P t A ---> % is the
composition pP-9 where - : M --=>/\ is an increasing

cofinal function from the directed set M to_A . That is

) ¢ M £ 7 € /%) where M M,

(11) for Ne N there is some 4 & M such that A< (¥
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1.2.79. ¢ Ultranet

A net (xyn ) in a set ¥ is an ultranet iff for
each sub-net E of X, (xqn ) " is either eventually in
in X - E.

E or eventually

1'2080' : w

A filter on a set & is a set f? of subsets of

which has the following properties :

X
F, : EverY subset of X which contains a  set
then G & f& where. F. G € X.
F : Every finite intersection of sets of Ff belongs
n
tO F . ioecy if F’ G E P‘ then F ﬂ G e }:’ .
. empty set is not in . i.e.
F, : The emP ' fro o lien pg
gxample ¢ If KF P the set of subsets consisting of X
slone is a filter of X. MOre generally, the set

of all subsets of ¥ Wwhich contain a given non-

empty subset A of ¥ is a filter on X.

i hbourhood Filter

y.2.81. ¢ NeIERE

topological Space ¥,  the set of all

15Y

In &
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neighbourhoods of an arbitrary non-empty subset A of X

isag filter, called the neighbourhood filter of A.

1.2.82. ¢ Frechet Filter

1 X is an infinite set. the complements of the

finite subsets of X are the elements of a filter. The

filter of complements of finite subsets of the set N of

integers >» O is called the Frechet filter.
z

1.2.83. : Comparison of Filters

Given two filters o ‘9 on the same set X,
lg is said to be finer than }L’ » Or (& is coarser than L?/

if frc cg . If also R £ C% » then C% is said to be

strictly finer than F" s or is strictly coarser than f%

Two filters are said to be comparable if one is

finer than the other.

1.2.84. : Fixed and Free Filters

a filter [~ on £ is fixed iff /]F‘7& p and
free iff /) PN::¢

1.2.85. 3 B_&éﬁ-.‘!f_?_.filter

A set (b of subsets of a set § ia said to be

base of the filter it it satisfies the following axioms
a
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(i) The intersection ot two sets of q% contains a

set of ﬂ) . i.e., |if F € 42 and H % ,  then

there exists a G € g such that G c F N H.

(ii) §5 is not empty and the empty subset of X is
not in ¢} - i.e., %7‘ P and Pe%

Two f§ilter bases are said to be equivalent if they

generate the same filter.

Example : Let % ° { a, b, ¢} Then & ( a}, ¢ a, b}
( a, ¢ 1} is a filter base in X.

1.2.86. : Ultrafilters

An ultrafilter on @ set X is a filter {» such

)v

that there is NO filter on X which is strictly finer

than fr .

yltrafilter Base

1.2087‘ ;

A filter base ©On 3 set X is called an
ultrafilter pase iff it is @ base of an ultrafilter.
y.2.88. @ Irace of a Eilter

Let fr pbe a filter on a set X and A is a subset

A
~ o .
o¢ 4. Then the trace £ of > on A is a filter iff

ts A.
each set of mee
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1.2.89, : Induced Filter

Let A be a subset of a set X and ;r a
filter on X. If the trace of £ on A is a filter on
A this filter is said to be induced by 97 on A.
1.2.90. : Limit of a Filter

Let X be a topological space and & a filter
on X. A point x € X is said to be a limit point (or
simply limit) of @, if  p is  finer than the
neighbourhood fb (x) of X 3‘53’ is also said to
converge (or to be‘convergent) to X. The point «x is
séid to be a limit of a filter base 4% on %, and Q% is

said to converge to x , if

converges to Xe.

102'91' H
In a topological
clustre point of a filter
of all the sets

the closure

cluster Point of a

the filter whose

base is qb

Filter Base

space (¥,

base gb
of gb .

a point X is a

on X if it lies in
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1.3. EARLIER WORKS RELATED TO PRESENT INVESTIGATION

Noiri and Takashi @ﬂ studied about S-closed

space in a paper "A note on S-closed space". In their

investigation, they have showed that, a space ¥ is said to

be S-closed if every cover of X Dby regular closed sets

has a finite sun-cover. The main result is that an S-closed
space in which every open set is the union of regular closed

sets is extremally disconnected.

Yoo, Moo Hajkwon, Taikyum[38] have introduced a

paper "A note on S-closed spaces". Through this paper they

showed that 2 topological space is said to be S-closed if

every semi-open covVer of ¥ has a finite subfamily whose

closure are a cover of the space. A space X 1is said to be

quaSi—H-closed‘ if any open coVer of the space has a finite

ubfamily whos® closure cover the spaces.
s

.

Reilly and Vamanamurthy [29] haye gijven a

dichSSiO" "On semi-compact spaces". According to them
subset S of 2 topological space (X, T) is said to be

a

< omi-open i f S  CliInt(S)). A topological space (X, T)

said to be semi-compact if each cover of ¥ by semi open
s

a finite sub-cover,

i

subsets has
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, 392
2i. Qiu Yum[ ] has discussed about necessary and

sufficient condition for extreme disconnectedness f
or a

locally S-closed space.

Ram Prasad [27] has been discussed on S-compact
- ac

spaces. According to him, a subset B of a topological
cal space

g is said to be semi-open if there exists an open t U
se

such that U c Bec ClLIU),

A topological space is said to be S-compact f
c i

each semi-open cover of X has a finite sub-co
: = ver.

{n a paper entitled “Connectedness and t
strong

cemi-continuty", Reilly, lvan and .Vamanamurthy (28] ciated
state

that a Sl;lbsat S of a topologicall space (X ™ i | 1ed
’ S ca e

an oC -set if S c Int(CllInt(S))), It is kn h
own that

(X, 1< ) is a topological space, where TX denote th
S e

class of o -get on (%, T).

The concept of o =~continuo
us and o< -0
pen

nappings has been introduced by Mashhour, Hasanein d
an

g1-peeb 121
is called an o -set if g < ( g° )° d
i : an for

They showed that a subset of a topological

space X

space x and Y , @ Mapping £+ X ---> Y is said to b
o be

[ o -openl if the inverge image of each

< - continuous
is an oKL -set.

A

open set in Y
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Dasgupta and Lahiri [40] have investigated about

the continuity of semi open and closed function with the

result that if X and Y be first countable Hausdorff

spaces and if Y is also compact and perfect, then every

open and closed function from X to ¥ is continuous.

In a paper "On almost strongly @ -continuous

function®, Noiri, Kang and Sin Min [24] have introduced and

investigated 2 new class of continuous functiong, called

almost strongly © -continuous functions, which contains the

class of strongly O -continuous functions and is contained

in the class of 5 -continuous functions.

Noiri and Takashi (28] have  introduced the idea of

almost locally connected spaces.  They showed Lhat almustl

locally connectedness is preserved under almost open almost

. : el innag ancd that - .
an b AL R ron o #t the aninon At regular Apen

sets of an almost locally connected space is almost locally

RTTTACEN t sl

In the paper "Almost continuous functions",
pornor and andrew®] have shown that a function f : X ---> Y

;s almost continuous if for every — x g X and for each open

. N -t
sét ve Y containing fix), Cl(f "(v)) is a neighbourhood

of X
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In the paper "Semi-continuous and semi-weakly

continuous functions®, Njastad [20] have shown that if
f : (X, T) ---> (Y, U) 1is a semi-weakly continuous iff
£ : (X, T) ---> (Y, U) is semi-continuous, where U is the

semi-regularization topology of Y,

Commayoto, Filippo, Lo Faro and * Giavanni [1) have
introduced a generalization of the concept of continuity in

the paper " & -continuous functiond. Sonpe inter relations

between S -continuous functions and other generalizations of

continuity, such as almost continuity, © -continuity etec.

are obtained and some other properties of ¢ -continuity

are studied in this paper.

In a paper "A note on strong compactness and

s -closedness", Atia, R.H ; El-Deeb, s.N, ; Hasanein, 1.a.[2]

defined some properties of strong Compactness and s-

closedness. According to them, a subset s of , topological

space & is pre-open if S c Int(Cl(g)) 4pq semi-open if
s c cl(int(s)). A space is said to be strongly compact if

svory pro-open cover of S has a finjtg Sub-cover. A space
to be s-closed if every semj-gpen cover has a

is said .
. sures f
subfamily whose clo Orm a cover. The authors

finite
some results from two eaeligr papers.

Strengthen “
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In the paper "On weakly ClDSEd.fUNCtionSn' Smital,

Jaros lav, Kubackova, Elena[34] defined a real valued real

function f to be weakly closed at «x, provided that

whenever { x; l}i=1 is a sequence in R that converges to

o
X, » the set of images { f(x;) }_, is closed. Let Ay

denote the set of all points x at which f : R ---» R is

not weakly closed and let essAg denote the set of all

points X e Af such that there does not exists a function

g : R ---> R such that f [RN T x ) = g/RN{ x } and g

is weakly closed at x. Among the results obtained by the

authors are the following

- 1 : For any set A ~ R there exists a

Theorem
g with A = Ag -

Theorem - 2 : For each f : R --_5 g, essAf} is an
F. -set.

Theorem - 3 : For any F_ -set A 5 g, there

[}
>

f such that essAf and £ is

is a bounded
continuous outside the set A.
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1.4, PRESENT DISCUSSION

In Chapter - Il we have discussed some properties

of s-closed and S-closed spaces. Ve have obtained some

properties of extremally disconnected spaces and these are

Jiscussed in Chapter - 111, In Chapter - IV, we have
discussed some properties about strongly neighbourhood
of sets, almost continuous, & -continuous

finite family

and set-connected mappings,



CHAPTER - 11

SOME CHARACTERIZATION OF s-CLOSED SPACES

2.1 : Introduction

The class of s-closed spaces has been introduced
and studied by Di Maio and Noiril'¥l ., Gansten and Reilly (2]

the relationship betwen the class of s-closed space

examine
and the more familier class of S-closed spaces which was
introduced by Thompson[3€] and studied by Cameron5] . The

purpose of this Capter is to obtain several characterization

os s-closed and S-closed spaces.

2.2 Preliminaries

Throught the present note, by ¥ ye denote a

topological space. Let A Dbe a subset of j. The closure

and the -interior of A are denoted by C1(A) and

of A

Int(A) respectively. A subseét A  is said to be Pre-open

if A < Int(CLLAY). A subset A is called semi-open
semi pre-open) if thgre 8xists an open

cespectively pre-apen) set U such that U « A « cl).
r

the family of all pretopem (respectively semi-open, semi

o-open) sets of X is denoted by PO(X) (respecticely
pre”
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SO(X), SPO(X)1. Lavine [ (respectively Andrijevic [ )

showed that a subset A of X is semi-open (respectively

semi-preopen) iff A < CltinttA)) {respectively

A CZCl(lnt(Cl(A)))].

The complement of a semi-open set is called semi-

closed. The intersection of all semi-closed sets containing

a subset A of X is called the semi-closure of A and is

denoted by sCl(A). It is obvious that sCI(A) is semi-

closed. The semi-interior of A, denoted by sint(A), is

difened by the union of all semi-open sets contained in A.

A point x of ¥ 1s said to be a @ -adherent point

(respectively S -adherent) point of A if AN ClL(u) # ¢

(respectively AN Int(Cl(U);ﬁ $ ) for every open set U

containing x. The set of all O -adherent (respectively

§ -adherent y .points of A is called the & -closure

(respectively & -closure) of A and is denoted by Clg(A)

[respectively Clg (A))

sets

2.3 Regular open :

pefinition @ 2.3.1 ¢
Let A be 3 subset  of a topological space
A js said . to be regular oPen (respectively

(x, T
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regular closed) if Int(Cl(A)) = A ({res t |
pectively
Cl(Int(A)) = Al
The family of all regular.open sets of X is d ted
enote
by RO(X).

Every regular open set is open but the

Remark : 2.8.1

converse is not usually true.

Proof : Let A & ROX)
then IntlellA)) = A
=> Int(Int(CltAY)) = Int(A)
=> [pt(Cl(A)) = Int(A) f Int(Int(A)) = Int(A)]
Int(A)

=> A =
Hence A is open. But the converse is not usuall
Yy

true.

PropOSitiOﬂ .

The intersection of two regular open set
ets is

regularl open:

proof Let A and B be tWO.Pegular open sets of {

Then bY definition,

[nt(Cl(A))

>
\

Int(C1(B))

o
\

and



Now, Int(Cl(A N B))

Proposition : 2.3.2 :

U A

xXEV

Proof :

i.Qe A

NoW, In

Remark @

convers®
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ANB

Hence the result.

If { Ax }xe;v

Int(Cl(A) N Cl1(B))

Int(Cl1(A)) N Int(Cl(B))

€ RO(X).
Given that ( A} o be a collection of
's are all RO(X).
o< X
Therefore, Int(Cl(Ax)) = A, xXxew
BCIC U AP = IntlCHIAY Ay ----- 1, X
x<e YV
= Int(CI(A) U Cl(A,) |y =—muuuo
= lnt(CI(A|)) v lnt(Cl(Az )y \J
= A"U A2U A3U ————————
= U AO(
<Ke v
A & RO(X).
ce L’ <
Hen <€V
2-3'2

Every: regular open set is

is not'usually true.

semi-open

be a collection of RO(X)

then

RO(X),

but
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Proof : Let A & RO(X)

then A = Int(Cl(A))
=> Int(Cl(A)) C A
Now, Int(CltA)) = Int(A)
suppose, U = Int(A) where U is an open set.

Then we have U ¢ A < Cliu).

Therefore, A is‘semi-cpen. But the converse of

is theorem is not necessarily true.

Proposition : 2.3.3

A < RO(X) , then Clta) = cI -
4 5(A) = Clga)

From the definition, it is obvious that

1£

Proof
Cl(A) Cl (A C A
(a S b < 10( ) for every

cubset A Of X. Thus, to show the required result, we

are to show that ClgtA) C Cl(A).

Assume that X ¢ Cl(A), . then un a - ¢

n set U containing «x.

some ope

for
ye have U M CIA} = @ —and  have
cluy N Int(Claan = @ .
gince A & RO(X), we obtain ci(uy N A = <P
rhis shows that X € % - Clg(A). Consequentiy.
we have Clgth! c citA) and hence we have

(A) = Clg(a),

Y
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Proposition : 2.3.4

Let Y be a pre-open set of X and let U

be a regular open set. Then H = Y AU is regul
ar open

in the sub-space Y.

Proof : Since H is open in Y, ‘then Hc Int (Cl_(H)N
Y Y )

Now let there exists a point " «x Int <«
< Yy Cly (H)) such that

X fé H. Then there exists an open set V\, in v h
suc

Cl_(H) ( :
that x @ Vy c ClyH)l < €l < Clw),  then vy s
pre-open in ¥. Hence x g Int(Cl(uy) = y But féH
' : . X .
x Y and H = YNU => xﬁélh This contradiction
shows that H = Ipty(ClY(H)). Consequently H is regular
YQ

open in the sub-space

2.4 @ Semi-regular sots

pefinition : 2.4.1

subset § of a space (X, T) js said t b
o e

A
semi-regular if it is both 5eMi-open and semi-closeq
The family of all Semi-regular sets of X i
is
gach
denoted  BY SR(X). ” For ¥ e X, the family of a1l
¥ c ini
semi-regular sets  of °ntaining x  is denoted by

SR(x).
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Also, Di-Maio gy defined a subset S of ¥ to
be semi-regular open if S = slInt(sCl(S)). On the other

hand, Cameron [5] defined a subset S of a space X to

be regular semi-open if there exists a regular open set U

of X such that U C S C Cl(U).

The following proposition shows that the above

three notions are equivalent.

Proposition : 2.4.1

For a subset A of a. space {, the following

are equivalent 3

(a) A & SRUX)

(b) A = slnt(sCl(A))
(c) There exists a regular open set U of X
such that U cCA < Clu).

o roof (a) --> (b)

1f A & SR(X), then we have A = sCl1(A) = sint(A)
Therefore, sInt(sCl(A)) = sint(A) = A,

(p)y --> fe)

suppose that, A = slInt(sCl(A)). Sincs

Int(Cl(S8)) < SCI(S)_ for every subset S of

< Int(Cl(A)) C sint(sCLLAYI = "A. " Since A< so(), we
h A C cl(int(A)). Thus we obtain
ave
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Int(C
nt(CltA)) < A C Cl(Int(A)) < Cl(Int(Cl
(A)))

Where, Int(Cl(A)) is regular open si
’ ince
Int(Cl(lnt(Cl(A)))) = [nt(Cl(A))
(¢} -~ (a)

{t is obvious that A < SO(X), then we h
ave
lnt(Cl(A)) = Ilnt(Cl(U))
. = UcA a
nd hence

A is semi-closed- Thus we have A g SR(X)

Proposition : 2.4.2

A < SO(X), then sCl(A)& SR(X)

If

proof ¢ We know that, SC1(A) is semi-cl

. . -closed. Ve are
to show that sCl(A) & SO0iX). Since
A.
& SO0(X)

for some open set U of  x i ’
: herefore,

y c A < o

— sCl(A) € ClU)  and he
nce

we have U c;sCl(U)

sCl(A)éSD(X). Hence sCl(A) < SR(
).

Definition : 2.4.2

A point X e & is said to be a semi-@
- ® -adherent

g of a subset S of % if sClu)yNn g 3 P
for every

poin
U € so(x). The set of 'all semi- ® -adherent point
s of S is
._ o -closure of S and i
called semi- @ ~° L nd is denot
ed by sClI
semi- ©-cl o (S)-
osed if sCIG(S) = S

A subset S is called
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Proposition ¢ 2.4.3

Let A be a subset of a space X. Then we have

(a) 1f A & SO0(X), then sCl(A) = sCl_(A).

(b) If A € SR(X), then A is semi-@ -closed.

Proof @ (a) It is obvious that sCl(A) c:sClG(A). Assume
that X ﬁf sCl1(A). Then fpr some U & SO0(x), ANU = 90

and hence A N sCLU) = p, since A g SO(X). This shows

that X ﬁg sClG(A).. Therefore, sCl(A) = sClQ(A).

(b) A € SR}, - which gives A is semi-open and
semi-closed. 1f A € SO(X), we hav§ sCl1(A) = sCly (A).
also if A is gemi-closed then sCL{A) = A,

Hence sClﬁ(A) = sCl1(A) = A and consequently A
is semi-@ -closed-

Prop05ition : 2.4.4

is open in a space X , then

if O
sCl1(0) = Int(ClL(0)),
¢ For every subset S5 of X ,  Int(Cl(S))C sCl(S),
proot?t ° :
N -rifzﬂ ). We show the OPPOSite inclusion. Assume that
(Noi

Then x € ClUIntiX-0))e SO(X). Since O

« ?flnt(c :
o cC lnt(Cl(D)) and 0N CliInt(X¥-0)) = ¢

is opens Y€ have
x/é sCl1(0D). Therefore.“ye obtain

_ci(o) = [IateCran.
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2.5 : s-closed and S-closed spaces

Definition : 2.5.1

A space (¥, T) is said to be s-closed if f
or

every cover { VY ' v ) of ¥ by semi-open sets of

i, there exists a finite subset VO of < such that

x =y  SCll ) I XET% T

{0 definition 2.5.1 the space (X, T) is called
e

g-closed if Scl(vx) is replaced by Cl(V, ). 1t is
obvious that gvery s-closed space is S-closed and in
aio and Noiri [1] we have , if X is extremally

then CIX(S) = sCl, (8) for every Semi-ope;

disconnected
among weakly Ty -spaces the class of S-

set s in X.
closed Spa2ces coincides Lith the 01365 of s-closed space
S.
A fLieet base ¥ on ¥ is said to be SR
convers® to xe& ¥ if for each V & SR(x) there exist
F ey such that Fc v A filter base f~ is said t
0
SR-accumulate st *x€ X if VN F# @ for every Ve SR(x)
and Fe R
Proposition . 2.5.1
For 3 SP2°° (%, T) the following are equivalent
% is g-closed.
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(b) Every cover of X by semi-regular sets has a

finite subcover.

(c) Every maximal filter base SR-converse to

some point of X.

Every filter base SR-accumulates at some

(d)

point of X.

(e) For every family { V. ! K€V )} of semi-

regular sets such that NtV 't X€eV 3y =¢ ,

there exists a finite subset Vo,of V such that
Proof : (a) -=> (B

From the definition of s-closed space, it is
obvious.

(b) --> ()

Suppose 5;,‘ be a maximal filter base of X.

that § does not SR-converse to any point of X.

Assumée

|4 does not SR-accumulate at any point of X. For

Then .
gach x€ ¥ there exists Fx€F and Vx &€ SR(x) such
that V() Fx =9 The famlly (Vv ¢+ x €% ) isa
cover of % bY semi-regular sets of 1, By (b, thore
exists 2 ginite NUIDET °f p°i"f3 11 Xy d SR T
such that % = Ut Ve, Pol®L,2,8, -0 »n ). Since §
is a filter pase on £, there existg “Foefz such’ that
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E \ i =1,2,3,----- =-=-,n )f Therefore, we have

Fo C Nt Ly '

F, =(P . This

is a contradiction. Hence the result.

(c) --> (d)

Let f7 be a filter base on ¥ and ;% be a

filter base such that ¢ p% + ' By (c),F%

x € X. For every F&€ R and every

max imal

e
SR-converges to sOm

v & SR(x), there exists Fo & g such that Fy < v,

herefore, we obtain V.7 FDO FNF 3¢ 2 - This shows
Ther ’

that £~

SR‘-aLccumUl"=‘{:V9s at  x.

() --> (e
Lot € Voo i <ewv) be a family of semi-regular
N {Vx txXeV) = o | Let 7 (v

such that

sets .
che family of all finite subsets of Vv .+ Assume
denotes
n v L xe Y'Y A P for every  ye [T(9U).  Then
that =

the family = {x{;y V¥ e P(V)}

s on . By (d), F SR-accumulates at some
jlter
i a fil .
is ¢ ¥ - Vx ' XE V) is a cover of X,
5. gince
X € , for some X, E V . Therefcre. we have
X - Ve,
X <
sr(x) and

¥ -V €

Va%éE F; . This is a contradiction.

i <& ¥ } be a cover of X by
Let { VL’C
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semi-open sets of . X, by proposition o 4.2

{ sCl(Vg ) o€ ¥ ) is a semi-regular cover of X. Thus

(% - sCl(Vy) | e<e v} 1is a family of semi regular sets

of X having the empty intersection. By (e), there exist
s
a finite subset ¥, of < such that,
Nix-sClivy | <xev,) = 0.
Hence ¥ = U sClLWV) i e<€v,). which shows
that X is s-closed.
Proposition : 2.5.2
infinite topological space X ca b
n e

Every

pepresented as @ closed subspaces of a space X which is

s-closed.

z be infini
proof Let an 1 ite T, - space and let
and 2_,= 2 x {2
z, = 2 X (1} 2 2 ). Ve may assume that
2 ) is empty. Let § = .
vy N 2V 2 Yuz, v z,. for
= { W:. C 2. =
i = 1. 2 let 4%% i Pt W=V ox i) for
some OPE" subs® qbs = G cC ¥ :
c _vu g Y e, where U<Y 1is opened in Y and e

are co-finite subsets
€2 of 2, respectively

that a topolo
know ) 8Y on X is defined by

2 2 ). we
as a base,
caking 4b,u sz u 6%)3 Clearly 2, and .
open in X and Y is & <closed subspaces of §

are

]

2
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For i = 1, 2 we obviously have Cly 2, = Y U 2. and

sCly 2; = 2 for each y ¢ Y, if SY =2, U {y.} then SY

is semi-open in X and sCl, Sy= Sy .

Hence { Sy | ve Y} Uu {2,} is a semi-open

cover oOf X which has no finite sub-family the semi-
cover X. Thus X is not s-

closures of whose members

closed.

Proposition : 2.5.3

There exists S-closed which are not s-closed.

7 be an infinite S-closed T, -space. Since

Proof : Let
i it follows that ¥ i
s dense in X, ! is closed
z'u 22 15 -
. [2] ) in particular, if 2 is an infinite set
(No1lr '

o-finite topology then X is even a connected

covering the c
-space which fails.to be s-closed.

S_CIOSBC‘ T‘

.2
befination ¢ 25

d to be semi-T, if every pair of

LY

A gpace is sali

¢ points can bse seperated by disjoint semi-open sets.
gistinct P

.1
COro|lary 2.5

There exists semi-T; S-closed spaces which are
_closed: “

not S
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Proof : If Y is an infinite discrete space and 2 is
an infinite hausdorff S -closed space then X is TI and
S-closed but not s-closed. { from proposition 2.5.2 and

2.5.3 1 . It is easily chepked that X is

proposition
semi- Ty .
ample if y Y, &€ Y and
For example, . Y Yo Y, F# Y, then

and 2, U { Y5 } are disjoint semi-open sets

2, U €Y, )
containing yy 20 y, respectively. . Similarly we can
show the other cases also.
pefinition : 2.5.3

A space (X, T) is said to be S-regular
semi-regular L&) if for each closed

(respectively

pectively semi-closed) s8t F  and each point x ﬁ{ F.

es
L;ere oxists disjoint semi-opén sets U and Vv such that
L and F & V. A space (X, T) is said to be s-compactIeJ
T:Eevery _omi-open cover of ¥ has a finite Subcover. It
i . om carnahan [ 6 1 that s~compactnes§ implies s-
f?;sednass put not conversely and Ss-closedness neither
c

ompaCtness nor is implied by compactness,
. ips C -
impl?

2,5.4

F’rr)l’-"o"s“"i‘:’n
| £ (x, T) is 8 semi-regular (respectively s-
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regular) s-closed space, then it is s-compact (respecti
‘ ctively

compact).

Proof : Let ( V! <€V} be a semi-open (respectively

open) cover of X. For each x € ¥, ‘there exists o< (x) &
~

v . i i
that X & K(x) Since. X is semi-regular

C

(respectively s-regular), -

The fami '
1 1ly { W x ! X €'x } is

.

sClLW ) € Y

that
a semi open cover of X. .By s-closedness of X the
’ Lhere

axists a finite number of points x, ., x,, x o

2 3! -————, xn
of X such that

CD C C
= sCl(W, . ) % .
X izl X ALT’ w X!

Thereforef ¥ is s-compact (respectively compact)

6 : Sets, s-closed Relative to a space

2.6.1

L2

Dafinition
, subset 5  of a space X is said to be S-closed
. ¢ for every cover (VY '
. it x + XEV Y of 5 1y
there exists a finite subset V, of ¢
°

P X E V)

rel
ts of X,

-open S€
s C \J{ sCl1 (V)

semi

such that

.1

ijg a semil O -closed sets of an s closed
= NS el

£ K
g is s-closed relative to y

space



(73)

Proof : t '
Le €V, XET )} be acover of K by semi
1-
regular sets of X. For each «x
€ ¥ -K th
A ’ ere exists
such that sCl(U(x))c X -
Kc By
. proposition

Uix) & SO(x)
sCl1(U(x)) & SR(x) for each x.
€ X and the -
family

2.4.2,
( sCl(U(x)) 1+ x&¥% - K1yuy Vv '
"<'°<6V) iSaco

ver of

regular sets of

v, of ¥ such that

X by semi- ¥. Since X isgclosed th
’ ere
subset

exists & finite
(Vx |} E v )

kK ¢ U
Thus K 1s s-closed relative to ¥
. 2.6.2

pefinition :

A space (¥, T) is said to be weakly-hausd
r, 1525 if eve . orff
(simply ~ weakly =2 ery point of ¥ is +tn
‘ e
n of regular closed sets of (.

intersectio

Proposition s 2.6.2
Lot 1% T) be a weakly=Ty space. If K is s
closed relativ® to K%. then K is semi- @ closed. -
Proof Let * € x - K. for ®ach x g K, there exists 5
regular closed éet F sueh ihat K e Fo ana . o
Since F x et SR (X" and K CUCF, ¢ g S,
C s 4.1 of Maio and Noiri [ o
PrDP051txon e o - o
Fr ! k € %o ® finite subset ‘.
)
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of K. Now putting V=N X - Fe ke Ko ? Then
V & SR(x) and VN K = o . Therefore, & sClg(K)
®
K is semi- O closed.

and hence

7: The Quasi-irresolute Images of s-closed spaces

Definttion : 2.7.1

A function f 2 X --->Y is said to be quasi-
irresolute if for each x &€ X and v ¢ SO(f(x)) there
exists Uu SO(x) such that f(U) C sCl(u),

f : (X, T) T Y, ol is said to be

A function

irresolute (respectively semi-contineous) jf £ (Ve so)

for every v € SO0(Y) (respectively vy ¢ o
Proposition : 2.7.1
S T Y s e quasi'irresolute function
and K 1% s-closed relative to i, then f (k) is closed
relative to Y.
proof Let | V! < €&w?) be a cover of  f(K) by semi-
ro :
. Since .
gular sots ©of Y f is quasi-irresolute
re |
{ f'l(vxl) pec € v’ 18 & Gover of k by semi-PSQUIar sets
* (mai® and Neiri £ 15 10 By Proposition 2.5,
of . | . N
ists & finite subset 7 .9f O sueh tras
shere = v

k ¢ U

B
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. f i
Therefore (Ky cUf V i Xevd: It follows

from proposition 2.5.1 that f(K) is s-closed relative to Y

A function £ ¢ X “--> Y is said to be semi-
© closed if f(F) is semi- @closed in Y for every
semi- @-closed set F of X.
pProposition 3 2.7.2

[ £ : X ---> Y is a quasi-irresolute function, X

s-closed and Y is weakly - T, , then f is semi- g

is

closed .

Proof Let F be a semi- @-closgd set of X. By
2.6.1, F is s-closed relative to X and

ppoposition
£(F) is s-closed relative to Y (Maio and Noiri [ 16 1 )
{5 weakly= Tz, by Prpposition 2.6.2.,  f(F) is

since Y
and hence f is semi- @ -closed.

semi- GVCiosed



CHAFTER ~- Ili}

Disconnected Spaces

Extremall

3.1. : lntroduction

[13]

Levine have defined semi-open sets d

an

o - cemi-o . 51 . [32)

utilizing  this pen sets. =ivaral has obtained
ne

ation of extremally disconnected space
s.

characteris
pre-open set and semi pre-open sets are defined by Mashh

) our

1

et ang} Andriijevic

some

. Now, using pre-open sets and

and
comi-pre-open s€tS several characterisation of extremally
es are obtained in this chapter

disconnected spac

3.2 3 Preliminaries
a supset f of a topological space % is called
alle
if there exists an open set U of X such
that

s AC CLU

where ClU) denotes the closure of U i
n X.

semi-open sets in a topological spac
e

The COl lec

X is denoted hy SO(X) A SUbset, A. is said to be pre-
open if A o int(cran. A subset A is called semi-pr;-
open {f ther® oxists an pre-open set U of (X such  that
e ac ciu. Apd: 1. mansef et a1l U have  introduced
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P -open sets and p -open are equivalent to that of gemi

pre-open sets. The family of all peopen (respectively .semij-

pre-open) sets of ¥ is denoted by PO(X) (respectively
SPO(X) ).
The complement of semi-open set is called semi
7. .
[J . The intersection of all semi~closed sets

closed
containing a subset A of X is called the semi'CIOSureB”

of A and is denoted by sCl(A). A point x of X i
s

{1
said to be a @ -adherent (respectively  §-adherent)
point of A if AN ciwy #4¢ (respectively
A (1 Int(Cl(u) #=4> ) for every open set ) containing
X. The set of all © -adherent  (respectively § -
adherent) points of A is denoted by Cly(A)
(respectively CIS(A) ).
Loemma H 3-3'1 4
For any ©péen set A in a space (X,
sCl(A) = Int(ClL(A))

Proof For every subset s of X, IntCl(s)) C sci(s)
esume that X ¢ [nt(Cl(A)). Then: x € Cltlnt(X - a)) g
co(x). Since A 1s opem 4O have, A C Int(Cl(A)  ang

= . This show
AN cleinttd 7 A)) ¢3 : s that «x ¢: sCl(A),

scl(A) = Int(Cl(A)), .

Therefore: we hwve,
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Lemma : 3.3.2

I1f A& PO(X), then Cl{A) = CIS(A) = C!(D(A)'
Proof it is obvious that clris) Cls(S)C: CIG(S) for
every subset S of X. Thus, it remains to show that

Assume that >c¢ Cl(A), then UN A = ¢

(A) Cl(A).
Clo C
U containing X. ‘We have U} Cl(A) =<P

for some open set
cl(u) N Int(Cl(AY) = ¢ . Since A € PO(X) we

This shows that J(E.X - ClgtA)

craana =¢ -

obtain
CIQ(A)<: cl1{A). Consequently we have,

=>‘
=> X ¢ CIO(A)

Cl(A) = Cls(A) = Clo(A)o
Lemma ¢ 3.3.3
(£ A é,SPD(X) then CIl(A) = Cls(A"
roof ¢ is obvious that CItA)C Cl (A). Assume that
— g — Cl(Al then U M A =¢ for some open set U
x € .
hing X since U is open, QI(U) N Int(Ci(A)) = ¢
contatin ’
we have (pt(Cl(UI) N Clilnt(CllA))) = ¢
and henc® _
. ce AE€ SpO(%), we obtain Int(Cl(U)) N A =¢
: n
Agaln sl
hows that X e £ - Cl (D(A)- Ther‘efore we have
This % _ _
4 hence CIl(A) = ClglAl.
](A) an
a) € ©

By
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3.3 : Extremally Disconnected Spaces :

pefinition : 3.3.1

A topological space X is called extremal!l
= a maliy

disconnected {brisfly E.D.) it Cl(U) 1is ops
n in X

for every open set U of X.

Proposition @ 3.3.1

The following are equivalent for-a space X

(a) ¥ is E.D.

(b) For each closed set Fin & Int(F) is closed
) osed,

each disjoint pair of open sets U, V i N
' in .

(c) For
we have criuy N crevy =¢ .
[’-'['l;‘lof ta) -7 {b)
Let F be a closed set in then % - F .
is
open in . since X is E.D., (Fl(x - F) is open . .

g - int(F) CIn X, Cl (X - A) = X - Int(A) ) i
, is

and hence
and consequently

Int(F) is closed {n 1.

also open

(b) -~? (ec)

Let U and V be two open sets of X such that
un Vv =¢ , then § - U and X -V are closed in X.
Now (¥ gy U X - vy = £ - (U0 V) 1is_closed.
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Therefore, Cl(UN V) = clegr = ¢

= Cclu N clwy = ¢

(c) -->» (3)

cr) N vy = ¢ for any two open sets U  and
v in X

We know that ¢ is open set, therefore Cl(u)
and Cl1{(V) must be open in %. Hence X is E. D.
Proposition & 3.3:2

A space (X. T) is extremally disconnected iff
Cl(A) = sCl (A} for every A.e S0(X).
proof : Necessity

[t is obvious that for every subset S of g
Int(ClH(S)) & ccl(s) c Clts). Since X is E.D., CIl(A) is
open in % fjor every A € POX), Therefore we have
scl(A) = CL(A! for every A& POUX).

gufficiency : For every AE€ T, A € SO(X) and

; A) = sCL(A) = 1 .
by Lemma ! 3.3.1. Cl nt(ClL{A)).  This shows
. gvery A& T. ;

that Cl(A) 1° open for Hence X is E.D.
proposition ? 3.3.3°

The following 3r® equivalent for a space X



@
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(a) X is E.D.
(b) The closure of every semi-pre-open set of X is
open.
(ec) The & -closure of every semi-pre-open set of X
is open. ,
(d) The § -closure of every pre-open set of . X is
open.
(e) The @ -closure of every pre-open set of X is
open.
(f) The closure of every pre-open-set of X is open.
- )
"pProof ¢ (a) -=> (P
¢ A € SPO(X) which gives A is open in X.
Le
Cl(A) is open in §,.
: E.D-r
gince % 1F
() --» te)
Since Cl(A) is open X for A € SPO(X) and
ne
3.3.3, we have Clg(A) is open in X,
: Lemma-9.“° "’
using
() --> td)
ce every pre-open set of X is semi-pre-open,
Ssin
re as
therefo® ‘
. A€ PO(XY.
also open for
(d) --> (el
A€ PO(K) and using Lemma-3.3.2 we have
For
c1_(a) is opem



(e) --» (f)

Using Lemma-3.3.2, it is obvious.

(f) -=-»2 (&)

For ®eVEery A ¢ S0O(X%), Cl(A) is open. Since
AcC SO(X) = A is open and conseguently Cl(A) is open.

.D.

Proposition : 3.3.4

For every A& PO(X)U SO(X) and .sCl(A) = Cl _ {
then X is E+D-
Proof : First, let A be any pre-open set of ¥ By

-3 3 ve Int(Cl(A)) = sC =

Lemma-3.3.2 we ha sCICA) CInIAD 'S C LAY
Therefore, cl(A) is open in & and hence it follows by
proposition—3-3-3 that, LA s aeE XD

Nex.t, let A be any Semi‘—ppemopEn Set Of .
ye have scl(Aa) & CltA) & Clglay) =N IsTLIA) 4 O
s e vengl calReli e it follows from proposition-
5 3.2 - BheE SeREE BBy

e 3.3-5

L

proposition

The following are sauivalent fer & space 1§ i

% is E.D'o
by sCl(A) = cl(A) for every A& SPO(X),

s Cls(A’ for -every A & SPOCY).

(c) sCl (A}
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(a) --> (b)
For every subset S5 of X, Int(Cl(S))c sCl(S)
C cCl(s). since X is E.D., by Proposition-3.3.3, ¢}(a)
is open in & for every A€ SPO(X). Therefore, we have
sCl1(A) = Cl(A) for every A € SPO(X). Therefore, we have
sCl(A) = Cl(A) for every A€ SPO(X).
(b) --> (¢)
From Lemma-3.3.2 we have clca) = Clg(a) for
Ac SPO(Xx). Hence sCl(A) = ClL{A) = Clg(A),
=> sCl(A) = (3I6(A).
(c) --> (a) |
Let U ~and V be any two disjoint open sets,
then we have sCIl1(U) nvs=g¢ S_ince sCl(U) € sSO(X), we
have scl(u) N schv) = ¢ By Lemma-3.3,2, we obtain
criuyn cievy = ¢ - This shows that X is E.p,
proposition & 3:3.6
The following are equivalent for a space ¥ .
(a) % is E.D.
(by If A € SPO(X), BE SO(X) and AN B =¢ .
then CIl(A) N C1(B) = ¢ ‘
o) 1f AE SPo(x), B € SOX) then AN B =¢ and

cigmrn Clg® =9
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() --> (a)
Since every open set is
pre-open and s i
emi-open,
A and B ©both are open. Also it is i
given

therefors,

that AN B = (p and Cl(A) N Cl(B) -4)
= . Hence X is
E.D.

3.3.7

e

Proposition

The following are equivalent for a spac %
[=] .

(a) X is E.D.
(b) 1f A€ SO(X) and BE SPO(X) then
cl(a) O CI(B) = CI(AN B).
(c) If AE€ so(%¥) and Be€& SPO(X), then
A BE SPOLX). ’
proof (a) --> (b)
Lot A€ SOtXx) and B € SPO(X). By .
oposition
-3.3.3 cl1(B) is open in X and we obtain
Cl(A)l\ cl(B) = Cl{Int(A)) O Cl1(B)
We know " that if ) is of .
pen  in X
then
U N clrs) cl(un s) for every subset S of . H
. ence,

Ay Cl(B) = Cl(int(A)) N Cl1(B)

C CliInt(A) N CI(B)I)C Cl(A O B)

clt

Therefore: we have ci(A) N CI(B) = Cl(AN B).
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(b) -=-> (e)

Let A€ SO(X) and B € 5PD(X). Then we have

ANBcC CltinttA)) n ClCInt(Cl(B)))
cl(Iint(A)) N Int(Cl(B))

cCl(lnt(A N C1(B)))

c citint(Cl(A)Y Y CH(B) )

= cr(int(Cl(Aa N B))).

This shows that AN B € SPO(X).

(c) --> (&)

jt is sufficiet to show that Cl(A) N Cl(B) =

Cl{AN B) tor all open set A and EB. Let A and B be

any two open sets of X then CI(A) and CI(B) are semi-

open and hence Cl(A) N Cl1(B) € SPO(X). Therefore, we have,

Cl(A) N CL(B)C ClLUINLICLIA) N C1(B)))

cl(Int(ClLLA)) N Int(Cl(B)))

]

cl(Cl(A) A Int(Cl(B)))

N

cl(A O Int(CL(BI))

N

Cl(A (A Cl1(B))

C
c Cl(aN Bl

Consequently we h?Ve‘

ci(A) N Cl(B) = Cil(A N By,

#ehansndd



CHAPTER N L

Nbd-FINITE FAMILY OF  SETS ALMOST

e ————

G -CONTINUOUS AND SET CONNECTED MAPPINGS

ON  STRONGLY

CONTINUOUS,

4.1 @ Introduction:

In this chapter, We study some properties of
strongly nbd. finite famify of sets, almost continuous,
s - continuous and set connected mappings. Almost
continuous mapping was first defined by Husain'™ and also
by Singal and Singalbq . Long and Carnahan[m] also
characterised some properties aboﬁt almost continuous
mapping. $ -continuous mapping was firét defined by
Noiriuq and set connected mapping was first defined by
Kwakua ﬁ
4,2 3 preliminarigs ¢
in this cahbter, ¥ .and Y always denote
Lopological SPaces: Let S be a subset of X. The
closure (respectively interior) of 'S will be denoted by
c1(s) (resrectively Int(S) ). A subset S of X is
called semi-opPen (respectively regular open., pre-open)  if
j(1nt(S)) (respeétively S = Int(Cl(S)), Sclnt(Cl(S))).

scC
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The complement of semi-open (respectively regul
ular open
pre-open) set is called semi-closed ,

(respectivel
Yy regular
closed. pre—closed). The family of all
‘ semi-open
regular open, pre-open)
’ sets will be

denoted

(respectively

by so(X) (respectively RO(X), PO(X) ) It is
: clear from
Chapter - i1 that, regular open
ness implies
openness
and semi-openness but the conv
erses

implies pre-openness,

are not true.

4.3 : Strongly nbd-finite family

pefinition : 4.3.1
A gamily (A, i MmME M} of subset of X is
gaid to Dbe strongly nbd-finite if for each
X in X,
there 1is an open set VY containing. x, sati
’ sfying one
of

the following conditions

(a) VN Am = ¢ for every m in M.
(b) There is a non-empty finite s
ubset N
of M
such that,
(i) V0 Agt¢  forevery m in m
(ii)? v N A,mC A\( for every m
. ’ k with m .
in
M and k in N and

(iii)
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Every strongly nbd-finite family fs nbd-finite

however, a nbd-finite family need not be strongiy nbd-

finite as shown by the following example :

= { a, b, c 1}

Let X
and T = { q’ , Cal, { b, ¢ }, X )
Then { { b1}, { ¢l ) is nbd-finite but not

strongly nbd-finite.

Proposition : 4,3.1

£ (AL i m€& M} is strongly nbd-finite, then

is also strongly nbd-finite.

( sCl{Agn) ( me M}

Lot «c X and V be an open set containing X

Proof
gefinition - 4.3.1(a), V.0 sCl(a,, ) = ¢ for

then from
ry m in M. So, let us assume that Definition-

eve

then it is enough to prove that

4.3‘1(‘3) hOldS,

1 (A ) C sCHAK) where M€ M and ke N,
m

vn sC

Let y & v N SCl(Am,9 me M. Let S be any
taining y. Then V n g i

cot con S semi-open

semi-open

of Crossely and Hildebrand L Hence

(Thegorem 1.9

N Am#
vn sn Ak?eq& which implies s n A ¥ ¢ and

This completes the proof.

1f k& N, then py definition-

M

v n S
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Proposition : 4.3.2

{ A H i =
[ £ m me M )‘ 15 a3 Sttongly nbd finite
1¢e

xo-then B =
U A, is semi-

semi—closed sets in
'me;M_

family of

closed.

Proof ¢ Let X € ¥ - B and V be an o
L3R 3. pen set containi
o ining

. if Defin;tlon"l#.S.l(a') holds, taking S =V
= and if

1(b) holds taking S = U [ vN(
mMeEN X - Am) .

pefinition-4.3:

t i i
ets 1s semi-open, S is s .
emil-

n of semi-open S

Since unio
open-. ClearlyY: x € S and hence BN S =
' ¢ so that
S5 - which implies that x - .
ce st ° B 1is semi-open and
hence B is semf—CIOSed,
pefinition ? 4.3.2
s of a topological
A subset al space & .
. . is said to
pe 2an x -set (Alph3d cet) if S € Int(CllInt(s)))
3 H '3'3
proposition ’ 4
H M}
Let Aom n € be an X -set covering of
a subset of X. Then B
* #ne > is semi-open
semi—closed) in X iff
(rQSPQCtively BN Ay is semi-
jvel ._closed) in t
gt1valy seml he subs
open {res pace Aw“ for
me.
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Proof : Necessary part

Let B be an semi-open set in X

Then BN A, is semi-open in X. (By Proposition-1 £
-1 o

) (0] i i '
d d BNA - i
Njasta ) an m is semi-open in A (Theorem-1 of
Noiri[lﬂ y, BN A, is semi-open in A_.
Now let B be semi-closed in X. Then B i
- is
. Again, by Proposition-1 of Njastad [2)

semi-open in
(x - BYN A, is semi-open in X and hence semi-open
- By N = -

in Am' As (X A'm x, (B N Aqn)’ B N Am is

cemi-closed in A

Sufficiant part @

BN A is i- i
+n 1is semi-open in A_  for

Assume that
overy M- Then BN A is semi-open in X for every m
. = Ax =B0 ( U Ayl = .
since B B mem ™ 4&2»# BNAy), B s
comi-open in X. Assume that BN A, is semi-closed in A
for each m. Then A - (BN A,) is semi-open in A
n
and hence semi-open in ¥. Hence,
y -B = U CA - (BN A,))
me M m it

Wwhich implies that B is semi-closed in X. This

completes the proot.

m



Proposition : 4.3.4

Let L A . me& M ) be an covering of X

that all A are semi-closed and form a strongly

such M

nbd-finite family. Let B be a subset of X, If BN A
m

is semi-closed (respectively sSemi-ope '
pen) in ATﬂ for every
i then B 18  semi-closed (respectively semi-open)
in X.
Proof 1f BN A,, is semi-closed in A for every
N =
it then B LA is semi-closed in X and as
{ B AL oomile: M b esi s vstrangly nbo<findite; gl GB; N AL )
n am
;s semi-closed in £ which implies B is semi-closed
in X.
¢ B0 Agp o iz semi-opea in' AL ;. it ~eani;, be
prOVed : by considering complements, that B is e g
Dpen in x.

This completes the proof.
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4.4 : ALMOST  CONTINUOUS © - CONTINUOUS AN SET
CONNECTED MAPPINGS
pefinition : 4.4
f : X --> Y is said to be almost

A mapping
continuous if it satisfies one of the following conditions :

(a) 3 for each x € X and each open set v
containing f(x), the closure of _fq (V) is a
. {10
neigthUThDOd of X. ( Husa1nl ) ).
(b) £ for each x € % and each open set vVC Y
f(x), there exists an open set U C X

containing

containing X such that f(U) C Int(Cl(V)).
: . 139
(Singal and Singal ).
From the above definition, we established the
position :

following pro

: .1
Propositlon H 404
For 3 pre-open mapping f : X --> ¥, Definjtion-
inition-4.4.1(a).

implies d9f

4.4.1(0)
Let ,<£ x and let V‘: Y be an open set
Proof - vie clos! Lo iz
f(x). then £ (CLH (f (V)). (Levine "™ ).
ontaining | . -
i hat [pt(clivy)y s 3 regular open set and
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lnt(Cl( i . - 1S
v), C‘ (./I(U)o Sl“ce Definition-ll» 4
l(b) i

that VcC

-1
hold Dby f, f (Int(CL(V)) is open
e~ (Int(CL(VINC £ - o s

(Cr(vin C Cl(f‘(V)) a
c“f-‘ o 3 . . nd consequently
i a neighbourhood of X Th
. us
Definition“4-4~1‘a)- fohetes
proposition 4.4.2
f : X --> Y b
e an almost continu
ous

Let
ition_4,4.1(b) ) and let V C Y b
e pre-open. If

(Defin
-1 -1
x g £ V) put x € CI(f (v)), then
’ fix) € Ci1
. (v).
Proof : Let x € ¥  such that x ¢ £ @ (v |
_ ‘ ) but
x € CIl(f Vv and suppose f(x) ¢ crv) .
' . hen the
r
oxists an opef cet W such that flx)€ U and °
nd WNV-=
= and

v

since
¢ . Sinc
e f holds definition-a.a 1(b)

[nt(Ccl(uw)) nv
open set UC X such
that x €
v and

there exists an
f(u) < Int(Cl(U)). Consequently, f(U) N V = ¢
gt oun ¢! + Howsver:
since x € C! ‘ (V)#9 so that £(UINYV ¢
S50, WO have 2 contradiction. It follows that f(x) €
x) € Cl(V).
proposition 4.4.3
Let f g --> Y be an almost
Continuou5 m .
apping
(Definitin-4.4.1(b) | Them for each pre-open V C
A1 3N Y'
-ty f begi(vie

citf
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Proof Let v & ¥ ba a pre-open set. By Propositi
e ion-

4. 4.2, (1T € crny. Since,

-y c e (gcciceTN (v, For any mappi
ng.

cl(f
-1 -] -1
we have, clLif (w11 C £ LE(CLEE (V) C© sV clivn
4 404'2

pefinition :

£ : & --> Y is said to be weakly

A mapping H
if fOT each point x € ¥ and each open set v

continuous
containing £(x), there exists an open set U of X

of Y
containing X such that (U] C Cl(V). (Levine 2] ]
proposition ¢ a.4.4

Let £ : 8 -=> X is weakly continuous and pre-
open mapping- Then f is almost continuous.
pront ¢ U « € ¥ and V bs an open set of ¥
containing fFUx). Since f 1is weakly continuous, there
oxists an opPen set U of X containing x such that
f(ur € clr(v). since f is pre-open and U is open in
” then f£(U) is pre-open and hence,

4

FLU)C [nt(C1{£(UI)) C Int(CLIVII.

Hence § jg almost continuous by Definition-

-

4.4, 1(b1-
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Definition : 4.4.3

A mapping f ¢ X -->Y is said to b ®
e -

jff for each x € ¥ and each regular open set
e \Y

continuous
FUx). there exists a regular open set (
J

such that f(U) C V. (Noiri [2¢) ).

containing

containing X

Proposition : 4.4.5
[ a mapping f : X --> Y is £-cont{
ontinuous
| and x,
is pre open in x. Then /%, t ¥, ==> Y is §-continuo
: us.
Proof : Let X € X, and Vv & ROLY) containing f(x)
-_ x).
Since ~ f is §&- continuous, there exists U &€ RO(X)
X such that f(U)C V  and hence UNK.ERO(K,)
) o !

éontaining
. . qos
Hence there exists } 0 Xy, € ROMXg) containing x such

Therefore, /%y is & - continuous

that (f/%01C Y
pefinition 4.4.4
a mapping f K --> Y is called weakly open if

£(U) C | at(£(C1UN))  for each open set UC X. (Rose )

proposition : 4.4.8

£ ¢« X --> Y is weakly open, % -

1§ a mapping :
continuous then f i8S % - continuous.



and VvV C Y
be an open set containi
ng

Proof Let x € X
£(x). Then there exists an open set UC X
containing
X

such that f(Cl(u)) € ClI(V). Since f is
. Weakly s}
pen,

f(lnt(Cl(U))) < [nt{E(Cl(Int(CI(UII))) C [
nt(f(Cl(U))
).

lnt(Cl(V)) and hence £ .
ls 6—

Then f(lnt(Cl(U))) <

continuous.

pProposition 3 4.4.7

y

- -1
g7 (v) C Int(f (C1(v))) for each
pre-open set
vV of Y

v be a pre-open
set of Y
’ then VC

Proof Let
[nt(ClL(V)]). since f is weakly contin
> uous,
int c t ' C £~ intcr v . en fer e
poin X n ))), there
exists an o
pen
set Wx such that x € W, and flWa)C
Citint
Ny (CL(v))) C
cir(v). Then WaC ¢ "'(Cc1(v)). Consequently
- . , -1
flyy = U x X E ¢ hovy ) = -
I - Yt Wa t x€ f '(V) )
c f (C1L(V)). Hence f (V) C lnt(f-'(CI(v)))
proposition : 4.4.8

£ X --> i
Y is weakly continuous,

[f a mapping

for each pre-open set V of Y.

-

- -1
then Cl(f I yyyc £ (CrLv)
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Proof : Let x & Cl(f-‘(V)) and let x ¢ fq(Cl(V)) th
e . en

there exists 230 open set W containing f(x) such th
at

yn v =9¢ . Hence

R CALARS
(V) N WS Cliint(Clvn win

crwn vy = ¢_ . Since V is ©pre-open

then (at(Cl(Y)) N CLWIC ClLEInt(ClL(V)) N W)

= Cl(Int(Cl

c ClvV n W) = ¢ gince f is weakly continuous

and w is an open set containing‘ fix), there exists an
open set U containing X such that f(U) C Cl(W), Then
F(U) N Vv = ¢, Also x & Cl(f"(V)) and U is an open
x, then U DN o # ¢ . this implies

set containing

A A A

cl(f-

which gives us 3 contradiction. Therefore

Ly c P NTIRCARE

pefinition : 4.4.5
¢
A mapping ¢ : & --» Y |is said to be sef
0 . “
oonnected due to Kwak[) , itf for any closed open set F
e 00 ¢ VF) s closed-open in K.
proposition 4.4.3
Let Yy be an extremally disconnected space. It &
napping S BTN js set connected, then f s almost

Continuous.
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proof Let X be any point of X and V be any set of

Y containing £(x). Since Y is extremally disconnected
ed,

is closed—open‘in Y. Thus Cl(V) N f(X) is closed

cl1(Vv)
£(%). Putting Flciivin s = U

in the subspace

npen
gince f ;s set connected, U 'is closed-open in X
27
(Noiri[ ) , Lemma-1). Therefore, U is an ope
n

neighbourhood of x in ¥ such that,

fF(U) C clrev) C [nt(CLLV))

Hence f is almost continuous.
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