5 SEM TDC MTMH (CBCS) C 11

2022

(Nov/Dec)

MATHEMATICS

(Core)

Paper: C-11

(Multivariate Calculus)

Full Marks: 80
Pass Marks: 32

Time: 3 hours

The figures in the margin indicate full marks for the questions

- 1. (a) Let partial derivatives of a function of two variables exist. Does it imply that the function is continuous?
 - (b) Find $\frac{\partial f}{\partial x}$, where $f(x, y) = e^{x^2 + xy}$.
 - (c) Show that

$$f(x,y) = \begin{cases} \frac{2xy}{x^2 + y^2} & ; & (x,y) \neq (0,0) \\ 0 & ; & (x,y) = (0,0) \end{cases}$$

is continuous at every point, except the origin (0,0).

(Turn Over)

3

Or

Using definition, show that the function

$$f(x,y) = \begin{cases} \frac{xy}{\sqrt{x^2 + y^2}} & ; & (x,y) \neq (0,0) \\ 0 & ; & (x,y) = (0,0) \end{cases}$$

is continuous at the origin.

(d) Find

$$\frac{\partial^3 u}{\partial z \partial y \partial x}$$
 and $\frac{\partial^3 u}{\partial x^2 \partial y}$

$$\text{if } u = \frac{x}{y + 2z}.$$

Write True or False: (a)

> "If a function f(x, y) is continuous at (x_0, y_0) , then f is differentiable at (x_0, y_0) ."

- Use chain rule to find the derivative of w = xy with respect to t along the path $x = \cos t$, $y = \sin t$.
- Find the values of $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ at the point (π, π, π) for the function $\sin(x+y) + \sin(y+z) + \sin(x+z) = 0$

Or

of derivative Find the $f(x, y, z) = x^3 - xy^2 - z$ at $\rho_0(1, 1, 0)$ in the direction of $\vec{v} = 2\hat{i} - 3\hat{j} + 6\hat{k}$. In what direction does f increases most rapidly at ρ_0 ?

- Find the plane, tangent to the surface 3. $z = x \cos y - ye^x$ at (0, 0, 0).
 - Find the local extreme values of $f(x, y) = 3y^2 - 2y^3 - 3x^2 + 6xy$ 3
 - Find the points on the hyperbolic cylinder $x^2 - z^2 = 1$ that are closest to the origin.

Or

Find the maximum and minimum values of the function f(x, y) = 3x + 4y on the circle $x^2 + y^2 = 1$.

- Define gradient vector of f(x, y) at a point.
 - Show that

P23/435

$$\vec{f}(x, y, z) = (y^2 z^3) \hat{i} + (2xyz^3) \hat{j} + (3xy^2 z^2) \hat{k}$$

is a conservative vector field.

(Turn Over)

2

2

5

3

1

(c) Calculate the curl \vec{f} , where

$$\vec{f} = \frac{x\hat{i} + y\hat{j} + z\hat{k}}{\sqrt{x^2 + y^2 + z^2}} \qquad . \qquad 2$$

- 5. (a) State Fubini's theorem of first form.
 - (b) Evaluate

$$\iint_R f(x, y) dxdy \text{ for } f(x, y) = 1 - 6x^2y^2,$$

 $R: 0 \le x \le 1$ and $-2 \le y \le 2$.

(c) Prove that

$$\iint\limits_{\mathbb{R}} e^{x^2+y^2} dy dx = \frac{\pi}{2} (e-1)$$

where R is the semicircular region bounded by the x-axis and the curve $y = \sqrt{1-x^2}$.

- 6. (a) Define volume of a region in space. 2
 - (b) Find $\int_0^2 \int_0^2 \int_0^2 xyzdxdydz$.
 - (c) Find the volume of the region D enclosed by the surfaces $z = x^2 + 3y^2$ and $z = 8 x^2 y^2$.

Or

Evaluate the following integral by changing the order of the integration in an appropriate way:

$$\int_{0}^{4} \int_{0}^{1} \int_{2y}^{2} \frac{4\cos(x^{2})}{2\sqrt{z}} dx \, dy \, dz$$

- 7. (a) Write the formula for triple integral in spherical coordinates.
 - (b) Evaluate:

$$\int_0^{\pi} \int_0^1 \int_0^{\sqrt{3-r^2}} dz r dr d\theta$$

Or

Find a spherical coordinate equation for the sphere $x^2 + y^2 + (z-1)^2 = 1$.

- 8. (a) Define Jacobian of a function of two variables.
 - (b) Evaluate: 3

$$\iint\limits_{x^2+y^2\leq a^2}(x^2+y^2)\,dx\,dy$$

2

3

(c) Find the value of

$$\int_{C} \{(x+y^2) \, dx + (x^2 - y) \, dy\}$$

taken in the clockwise sense along the closed curve C formed by $y^3 = x^2$ and the chord joining (0,0) and (1,1).

O

Evaluate $\int_C (xy+y+z) ds$ along the curve c $\vec{r}(t) = 2t\hat{i} + t\hat{j} + (2-2t)\hat{k}, \ 0 \le t \le 1.$

- 9. (a) Define line integrals of a vector field.
 - (b) Find the circulation of the field $\vec{F} = (x y)\hat{i} + x\hat{j}$ around the circle $\vec{r}(t) = (\cos t)\hat{i} + (\sin t)\hat{j}$, $0 \le t \le 2\pi$.
 - (c) State and prove the fundamental theorem of line integrals.

Or

A fluid's velocity field is $\vec{F} = x\hat{i} + z\hat{j} + y\hat{k}$. Find the flow along the helix $\vec{r}(t) = (\cos t)\hat{i} + (\sin t)\hat{j} + t\hat{k}$, $0 \le t \le \frac{\pi}{2}$.

- 10. (a) Define Green's theorem in Tangential form.
 - b) Evaluate

$$\oint (y^2 dx + x^2 dy)$$

using Green's theorem, where C is the triangle bounded by x = 0, x + y = 1, y = 0.

1

3

5

(c) State and prove Stoke's theorem. 6

Or

Evaluate $\int_{C} \vec{F} \cdot d\vec{r}$ by using Stoke's theorem, if $\vec{F} = x^2\hat{i} + 2x\hat{j} + z^2\hat{k}$ and C is the ellipse $4x^2 + y^2 = 4$ in the xy plane, counterclockwise when viewed from above.

(d) Use Divergence theorem to find the outward flux of \overrightarrow{F} across the boundary of the region D, where

$$\vec{F} = (y-x)\hat{i} + (z-y)\hat{j} + (y-x)\hat{k}$$

and D is the cube bounded by the planes $x = \pm 1$, $y = \pm 1$ and $z = \pm 1$.

(Continued)

3