Total No. of Printed Pages-4

3 SEM TDC MTMH (CBCS) C 6

2022

(Nov/Dec)

MATHEMATICS

(Core)

Paper: C-6

(Group Theory-I)

Full Marks: 80
Pass Marks: 32

Time: 3 hours

The figures in the margin indicate full marks for the questions

1.	(a)	Write each symmetry in D_3 (the set of symmetries of an equilateral triangle).	1
	(b)	What is the inverse of $n-1$ in $U(n)$, $n > 2$?	1
	(c)	The set {5, 15, 25, 35} is a group under multiplication modulo 40. What is the identity element of this group?	1
	(d)	Let a and b belong to a group G . Find an x in G such that $xabx^{-1} = ba$.	2
	(e)	Show that identity element in a group is unique.	(1)
	(f)	Find the order of each element of the group ($\{0, 1, 2, 3, 4\}, +_5$).	6.9

(Turn Over)

P23/54

	(9)	Show that the four permutations I, (ab), (cd), (ab)(cd) on four symbols a, b, c, d form a finite Abelian group with respect to the permutation multiplication.	5
2.	(a)	In Z_{10} , write all the elements of $< 2 >$.	1
	(b)	With the help of an example, show that union of two subgroups of a group G is not necessarily a subgroup of G.	2
	(c)	Define centre of an element of a group and centre of a group.	2
	(d)	Let G be a group and $a \in G$. Then prove that the set $H = \{a^n \mid n \in Z\}$ is a	
		subgroup of G.	2
	(e)	Prove that the centre of a group G is normal subgroup of G.	4
	(f)	Let H and K be two subgroups of a group G . Then prove that HK is a subgroup of G if and only if $HK = KH$.	4
3.	(a)	If $ a = 30$, find $< a^{26} >$.	1
	(b)	List the elements of the subgroup $< 20 >$ in Z_{30} .	1
	(c)	Find all generators of Z_6 .	2
	(d)	Express the permutation	
		$f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 6 & 5 & 3 & 4 & 2 \end{pmatrix}$	
		as a product of disjoint cycles.	2

(e)	Find $O(f)$ where	
	$f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 4 & 5 & 3 & 1 \end{pmatrix}$	
	(2 4 5 3 1)	2
(f)	Let a be an element of order n in a group and let k be a positive integer. Then prove that	
< 0	$a^{k} > = \langle a^{\gcd(n, k)} \rangle \text{ and } a^{k} = \frac{n}{\gcd(n, k)}$	4
	Or	
	Prove that any two right cosets are either identical or disjoint.	
(9)	Prove that a group of prime order is	
1.7	cyclic.	3
(h)	State and prove Lagrange's theorem.	5
(a)	Define external direct product.	1
(b)	Compute $U(8) \oplus U(10)$. Also find the product (3, 7)(7, 9).	2
(c)	Prove that quotient group of a cyclic group is cyclic.	3
(d)	If H is a normal subgroup of a finite	
	group G, then prove that for each $a \in G$, $O(Ha) O(a)$.	4
(e)	Let G be a finite Abelian group such that	
	its order $O(G)$ is divisible by a prime p .	
	Then prove that G has at least one	
	element of order p.	5
/EA	1 Trem Ou	-

Or

Let H be a subgroup of a group G such that $x^2 \in G$, $\forall x \in G$. Then prove that H is normal subgroup of G. Also prove that $\frac{G}{H}$ is Abelian.

- **5.** (a) Let (Z, +) and (E, +) be the group of integers and even integers respectively. Show that $f: Z \to E$ defined by f(x) = 2x, $\forall x \in Z$ is a homomorphism.
 - (b) Prove that a homomorphic image $f: G \to G'$ is one-one if and only if $\ker f = \{e\}$, where e is the identity of G.

2

3

5

5

- (c) Prove that every group G is isomorphic to a permutation group.
- (d) Prove that every homomorphic image of a group G is isomorphic to some quotient group of G.

Or

Let H be a normal subgroup of G and K be a subgroup of G. Then prove that

$$\frac{HK}{H} \cong \frac{K}{H \cap K}$$