Total No. of Printed Pages-4 ## 3 SEM TDC MTMH (CBCS) C 6 2022 (Nov/Dec) ## **MATHEMATICS** (Core) Paper: C-6 ## (Group Theory-I) Full Marks: 80 Pass Marks: 32 Time: 3 hours # The figures in the margin indicate full marks for the questions | 1. | (a) | Write each symmetry in D_3 (the set of symmetries of an equilateral triangle). | 1 | |----|-----|--|-----| | | (b) | What is the inverse of $n-1$ in $U(n)$, $n > 2$? | 1 | | | (c) | The set {5, 15, 25, 35} is a group under multiplication modulo 40. What is the identity element of this group? | 1 | | | (d) | Let a and b belong to a group G . Find an x in G such that $xabx^{-1} = ba$. | 2 | | | (e) | Show that identity element in a group is unique. | (1) | | | (f) | Find the order of each element of the group ($\{0, 1, 2, 3, 4\}, +_5$). | 6.9 | (Turn Over) P23/54 | | (9) | Show that the four permutations I, (ab), (cd), (ab)(cd) on four symbols a, b, c, d form a finite Abelian group with respect to the permutation multiplication. | 5 | |----|-----|--|---| | 2. | (a) | In Z_{10} , write all the elements of $< 2 >$. | 1 | | | (b) | With the help of an example, show that union of two subgroups of a group G is not necessarily a subgroup of G. | 2 | | | (c) | Define centre of an element of a group and centre of a group. | 2 | | | (d) | Let G be a group and $a \in G$. Then prove that the set $H = \{a^n \mid n \in Z\}$ is a | | | | | subgroup of G. | 2 | | | (e) | Prove that the centre of a group G is normal subgroup of G. | 4 | | | (f) | Let H and K be two subgroups of a group G . Then prove that HK is a subgroup of G if and only if $HK = KH$. | 4 | | 3. | (a) | If $ a = 30$, find $< a^{26} >$. | 1 | | | (b) | List the elements of the subgroup $< 20 >$ in Z_{30} . | 1 | | | (c) | Find all generators of Z_6 . | 2 | | | (d) | Express the permutation | | | | | $f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 6 & 5 & 3 & 4 & 2 \end{pmatrix}$ | | | | | as a product of disjoint cycles. | 2 | | (e) | Find $O(f)$ where | | |-----|--|---| | | $f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 4 & 5 & 3 & 1 \end{pmatrix}$ | | | | (2 4 5 3 1) | 2 | | (f) | Let a be an element of order n in a group
and let k be a positive integer. Then
prove that | | | < 0 | $a^{k} > = \langle a^{\gcd(n, k)} \rangle \text{ and } a^{k} = \frac{n}{\gcd(n, k)}$ | 4 | | | Or | | | | Prove that any two right cosets are either identical or disjoint. | | | (9) | Prove that a group of prime order is | | | 1.7 | cyclic. | 3 | | (h) | State and prove Lagrange's theorem. | 5 | | (a) | Define external direct product. | 1 | | (b) | Compute $U(8) \oplus U(10)$. Also find the product (3, 7)(7, 9). | 2 | | (c) | Prove that quotient group of a cyclic group is cyclic. | 3 | | (d) | If H is a normal subgroup of a finite | | | | group G, then prove that for each $a \in G$, $O(Ha) O(a)$. | 4 | | (e) | Let G be a finite Abelian group such that | | | | its order $O(G)$ is divisible by a prime p . | | | | Then prove that G has at least one | | | | element of order p. | 5 | | /EA | 1 Trem Ou | - | #### Or Let H be a subgroup of a group G such that $x^2 \in G$, $\forall x \in G$. Then prove that H is normal subgroup of G. Also prove that $\frac{G}{H}$ is Abelian. - **5.** (a) Let (Z, +) and (E, +) be the group of integers and even integers respectively. Show that $f: Z \to E$ defined by f(x) = 2x, $\forall x \in Z$ is a homomorphism. - (b) Prove that a homomorphic image $f: G \to G'$ is one-one if and only if $\ker f = \{e\}$, where e is the identity of G. 2 3 5 5 - (c) Prove that every group G is isomorphic to a permutation group. - (d) Prove that every homomorphic image of a group G is isomorphic to some quotient group of G. #### Or Let H be a normal subgroup of G and K be a subgroup of G. Then prove that $$\frac{HK}{H} \cong \frac{K}{H \cap K}$$