Total No. of Printed Pages—11

3 SEM TDC GEMT (CBCS) GE 3 (A/B/C)

2022

(Nov/Dec)

MATHEMATICS

(Generic Elective)

Paper: GE-3

Full Marks: 80
Pass Marks: 32

Time: 3 hours

The figures in the margin indicate full marks for the questions

Paper: GE-3A

(Real Analysis)

(a)	Define countable set.	1
(b)	Show that the set \mathbb{Z} of all integers is denumerable.	3
(c)	Show that if $ab > 0$, then either (i) $a > 0$ and $b > 0$ or (ii) $a < 0$ and $b < 0$.	2
(d)	If $a \in \mathbb{R}$ is such that $0 \le a \le \varepsilon$ for every $\varepsilon > 0$, then show that $a = 0$.	2
(e)	Prove that if $x \in \mathbb{R}$, then there exists a positive integer n such that $x \le n$.	4
	(b) (c) (d)	 (b) Show that the set Z of all integers is denumerable. (c) Show that if ab>0, then either (i) a>0 and b>0 or (ii) a<0 and b<0. (d) If a∈ R is such that 0≤a≤ε for every ε>0, then show that a=0. (e) Prove that if x∈ R, then there exists a

(Turn Over)

P23/270

Or

Prove that if x and y are real numbers with x < y, then there exists a rational number $r \in \mathbb{Q}$ such that x < r < y.

- 2. (a) Define an open interval.
 - (b) Show that if y > 0, then there exists $n_y \in \mathbb{N}$ such that $n_y 1 \le y \le n_y$.
 - (c) Show that if $I_n = [a_n, b_n]$, $n \in \mathbb{N}$ is a nested sequence of closed, bounded intervals such that the lengths $b_n a_n$ of I_n satisfy $\inf\{b_n a_n : n \in \mathbb{N}\} = 0$, then the number ξ contained in I_n for all $n \in \mathbb{N}$ is unique.

Or

Prove that the set \mathbb{R} of real numbers is not countable.

- 3. (a) Define limit of a sequence.
 - (b) Define bounded sequence.
 - (c) Prove that the sequence (n) is divergent. 2
 - (d) Prove any one of the following: 3

(i)
$$\lim \left(\frac{1}{n^2+1}\right) = 0$$

(ii)
$$\lim \left(\frac{3n+2}{n+1}\right) = 3$$

(e) Show that every convergent sequence of real numbers has a unique limit.

Or

Prove that a convergent sequence of real numbers is bounded.

- 4. (a) Define Cauchy sequence.
 - (b) Prove that every convergent sequence is a Cauchy sequence.
 - (c) Prove that every sequence of real numbers is convergent if and only if it is a Cauchy sequence.

Or

Prove that if (x_n) and (y_n) are convergent sequences of real numbers and if $x_n \le y_n$ for all $n \in \mathbb{N}$, then $\lim (x_n) \le \lim (y_n)$.

- 5. (a) Define alternating series.
 - (b) Prove that if the series $\sum x_n$ converges, then $\lim(x_n) = 0$.
 - (c) Prove that the series

$$\sum \frac{\sin nx}{n^2}$$

is absolutely convergent.

3

2

1

1

(d) Show that the series $\sum x_n$ converges if and only if for every $\varepsilon > 0$, there exists $M(\varepsilon) \in \mathbb{N}$ such that if $m > n \ge M(\varepsilon)$, then

$$|S_m - S_n| = |x_{n+1} + x_{n+2} + \dots + x_m| < \varepsilon$$

Or

Prove that the alternating series

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$$

is convergent.

6. (a) Prove that the series

$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$

5

5

(Continued)

is convergent.

Or

Prove that the series

$$\sum_{n=1}^{\infty} \frac{1}{n}$$

is divergent.

(b) Test for convergence (any one): (i) $1 + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \cdots$ to ∞

(ii)
$$\frac{1^2 \cdot 2^2}{1!} + \frac{2^2 \cdot 3^2}{2!} + \frac{3^2 \cdot 4^2}{3!} + \cdots$$
 to ∞

7. (a) Define limit of a sequence of functions.

- (b) Write the statement of Weierstrass M-test. 2
- (c) Prove that the sequence (f_n) , where

$$f_n(x) = \frac{x}{n}, x \in \mathbb{R}$$

is pointwise convergent on \mathbb{R} .

- (d) Prove that the sequence (f_n) , where $f_n(x) = \frac{1}{x+n}$ is uniformly convergent on any interval [0, b], b > 0.
- **8.** (a) Define radius of convergence of a power series.
 - (b) If the radius of convergence of a power series is zero, then the series
 - (i) converges everywhere;
 - (ii) converges nowhere.

Write the correct answer.

(c) Prove that if R is the radius of convergence of $\Sigma a_n x^n$ and K be a closed and bounded interval contained in the interval of convergence (-R, R), then the power series converges uniformly on K.

3

1

1

Or

Prove that a power series can be integrated term-by-term over any closed and bounded interval.

(d) Find the radius of convergence of the power series $\sum_{n=0}^{\infty} a_n x^n$, where (any one)

(i)
$$a_n = \frac{n^n}{n!}$$

(ii)
$$a_n = \frac{(n!)^2}{(2n)!}$$

Paper: GE-3B

(Cryptography and Network Security)

- 1. (a) Distinguish between conventional and public-key cryptosystems. What are the basic requirements of a public-key cryptosystem?

 3+3=6
 - (b) Explain active attack and passive attack with real-life examples. 3+3=6
 - (c) What is message authentication? Define the classes of message authentication function. What are the requirements for message authentication? 2+3+4=9
 - (d) Differentiate between MAC and Hash function.
- 2. Explain the Secure Hash Algorithm (SHA) with neat diagram.

Or

Illustrate MD5 algorithm in detail.

- 3. Write a note on any one of the following: 5
 - (a) DSS
 - (b) TCP session hijacking
 - (c) Teardrop attack
 - (d) SSL

P23/270

(Continued)

P23/270

(Turn Over)

4. Explain the architecture of IP security in detail.

8

8

Or

What are transport and tunnel modes in IPsec? Describe how ESP is applied to both these modes.

5. (a) Explain SNMP architecture in detail. 6

(b) Vhat is firewall? Describe how firewall can be used to protect the network.

Or

Describe the working of Secure Electronic Transaction (SET) with neat diagram.

- **6.** Write short notes on any *two* of the following: 8×2=16
 - (a) VPN
 - (b) Smurf attack
 - (c) Intrusion Detection System (IDS)
 - (d) Encapsulating Security Payload (ESP)

Paper: GE-3C

(Information Security)

1. Answer any five of the following questions:

 $2 \times 5 = 10$

- (a) What is user authentication in information security?
- (b) What is cryptography?
- (c) Define virus.
- (d) What are worms in terms of information security?
- (e) What is cipher?
- (f) How does a plain text differ from cipher text?
- (g) What is a hash function?
- **2.** (a) Compare and contrast protection and security.
 - (b) Briefly explain any three aspects of security from the following: 4×3=12
 - (i) Data availability
 - (ii) Privacy
 - (iii) Data integrity
 - (iv) Authentication

(Continued)

5×2=10

3.	Briefly	explain	any	three	of	the	following	:
							4	5×3=1

- Trojan horse
- Trap door
- Stack
- **3uffer flow**
- How do system threats differ from communication threats? Explain with 4+6=10 examples.
- 5. (a) How does substitution cipher differ from transposition cipher? 5
 - (b) How does public-key cryptography differ from private-key cryptography? 5

Or

Briefly explain the functionalities of Data Encryption Standard (DES).

6. Briefly explain the functionalities of digital signatures. What is MAC? 8+2=10

- Explain any two of the following:
 - Intrusion detection
 - **Tripwire**

P23-2000/270

- RSA algorithm
- Diffie-Hellman key exchange

 $\star\star\star$