1 SEM TDC MTMH (CBCS) C 1

2022

(Nov/Dec)

MATHEMATICS

(Core)

Paper : C-1

(Calculus)

Full Marks: 60 Pass Marks: 24

Time: 3 hours

The figures in the margin indicate full marks for the questions

(a) Write the value of $\frac{d}{dx} \tanh x$. 1. 1 Write the curve on which the point (b) $(\cosh x, \sinh x)$ lies. 1 Write the interval on which 'secant' is (c) one-to-one. 1 Find y_n , if $y = \sin 5x \cos 2x$. (d) 2 Find y_n , if $y = x^3 \sin x$. (e) 3 **(f)** Sketch the general shape of the graph of y = f(x), where $\frac{dy}{dx} = 2 + x - x^2$.

3

(g) Find y_n , if $y = e^{ax+b} \sin x$.

4

Or

Evaluate $\lim_{x\to 0} \frac{\tan x - x}{x - \sin x}$.

(h) Find the asymptotes of the curve

$$y^2 - x^2 - 2x - 2y - 3 = 0$$

Or

For the curve $y = x + \sin 2x$, $-\frac{2\pi}{3} \le x \le \frac{2\pi}{3}$, find the local maximum, local minimum and the interval on which the curve is concave up and concave down.

- **2.** (a) Write the washer's area with outer radius R(x) and inner radius r(x).
 - (b) Obtain the reduction formula for $\int x^n e^{-ax} dx$.
 - (c) Obtain the reduction formula for $\int \cos^n x \, dx$.

O

Find $\int \tan^4 x \, dx$.

(d) Find the value of $\int_0^1 \frac{\sin^3 x}{\cos^6 x} dx$.

Or

Find the volume of the solid generated by revolving the region bounded by the curve $y = x^2$ and the line y = 0, x = 2, about x-axis.

- 3. (a) Write the parametrization of the graph of the function $f(x) = x^2$.
 - (b) If a curve is symmetric about x-axis and the point (r, θ) lies on the graph, then write which of the following also lies on the graph:

(i) $(r, \pi - \theta)$

(ii) $(-r, \pi - \theta)$

(iii) $(-r, -\theta)$

(iv) $(-r, \theta)$

- (c) Define a parametric curve.
- d) Write the polar equation of xy = 1.
- (e) Write the equivalent Cartesian equation of $r^2 \sin 2\theta = 2$.
- (f) Find the perimeter of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1, \quad \text{which} \quad \text{is defined}$ parametrically by $x = a \sin t$, $y = b \cos t$, a > b and $0 \le t \le 2\pi$.

P23/11

(Continued)

4

P23/11

(Turn Over)

1

2

Or

Find the centroid of the first-quadrant arc of the asteroid $x = \cos^3 t$, $y = \sin^3 t$, $0 \le t \le 2\pi$.

(g) Find the length of the curve $x = \cos t$, $y = t + \sin t$, $0 \le t \le \pi$.

O

Find the centre, foci, vertices of the conic section $x^2 + 2x + 4y - 3 = 0$.

4. (a) Define a vector function.

1

4

(b) Write the value of $(\vec{u} \times \vec{v}) \cdot \vec{v}$.

1 2

(d) Show that vector and its first derivative are orthogonal.

3

Or

Define triple scalar product of vectors.

Evaluate $\int_{0}^{1} (te^{t^{2}}\hat{i} + e^{-t}\hat{j} + \hat{k}) dt$.

(e) Find the unit tangent vector of the curve $\vec{r}(t) = \sin 2t \hat{i} + \cos 2t \hat{j} + \hat{k}$, $0 \le t \le \pi$.

3

O

Find the acceleration of the particle described by $\vec{r} = (t-1)\hat{i} + (t^2-1)\hat{j} + 2t\hat{k}$ at t=1.

* * *

(c)