6 SEM TDC MTMH (CBCS) C 13

2023

(May/June)

MATHEMATICS

(Core)

Paper: C-13

(Metric Spaces and Complex Analysis)

Full Marks: 80
Pass Marks: 32

Time: 3 hours

The figures in the margin indicate full marks for the questions

1.	(a)	Real line is a metric space. State true or false.	1
	(b)	Write when a metric space is called complete.	1
	(c)	Define usual metric on R.	2
	(d)	Define Cauchy sequence in a metric space.	2

(e)	Let X be a metric space. Show that any
	union of open sets in X is open.

Or

Show that every convergent sequence in a metric space (X, d) is a Cauchy sequence.

Let X be a metric space. Show that a subset F of X is closed if and only if complement F' is open.

5

5

1

1

Or

In a metric space (X, d), show that each closed sphere is a closed set.

(g) Let (X, d) be a metric space and $A \subset X$. Then show that interior of A is an open set.

Or

Let (X, d) be a metric space and $Y \subset X$. Then show that Y is separable if X is separable.

- Define an identity function in a metric 2. space.
 - Write one example of homeomorphic spaces.

Define uniform continuity in metric spaces.

Define connected sets in a metric space.

Answer any two questions from the following: 5×2=10

- (i) Let (X, d) and (Y, r) be metric spaces and $f: X \to Y$ be a function. Then prove that f is continuous if and only if $f^{-1}(G)$ is open in X whenever G is open in Y.
- (ii) Let (X, d) and (Y, r) be metric spaces and $f: X \to Y$ be a uniformly continuous function. If $\{x_n\}$ is a Cauchy sequence in X, then show that $\{f(x_n)\}\$ is a Cauchy sequence in Y.
- (iii) Let (X, d) be a compact metric space. Then show that a closed subset of X is compact.
- Write the condition when the complex numbers (a, b) and (c, d) are equal.
 - The nth roots of unity represents the n vertices of a regular polygon. Write where the polygon is inscribed.

1

1

2

- (c) Write the necessary and sufficient condition that the complex numbers represented by z_1 and z_2 become parallel.
- (d) Find the limit of the function f(z) as $z \rightarrow i$ defined by

$$f(z) = \begin{cases} z^2, & z \neq i \\ 0, & z = i \end{cases}$$
 3

1

O

Write the equation $(x-3)^2 + y^2 = 9$ in terms of conjugate coordinates.

(e) Show that $\frac{d\overline{z}}{dz}$ does not exist anywhere.

Oı

Prove that $f(z) = \begin{cases} z^2, & z \neq z_0 \\ 0, & z = z_0 \end{cases}$, where $z_0 \neq 0$ is discontinuous at $z = z_0$.

(f) Find the Cauchy-Riemann equations for an analytic function f(z) = u + iv, where z = x + iy.

Or

Find the equation of the circle having the line joining z_1 and z_2 as diameter.

- 4. (a) Write the point at which the function $f(z) = \frac{1+z}{1-z}$ is not analytic.
 - (b) Define singularity of a function.
 - (c) Write the statement of Cauchy's integral formula.
 - (d) Prove the equivalence of

$$\frac{\partial}{\partial x} = \frac{\partial}{\partial z} + \frac{\partial}{\partial \overline{z}}$$

1

2

(e) Find the analytic function f(z) = u + iv, where $u = e^x(x\cos y - y\sin y)$.

Or

Find the value of the integral $\int \frac{dz}{z-a}$ round a circle whose equation is |z-a|=r.

- 5. (a) Define radius of convergence.
 - b) Write the necessary and sufficient condition that $\sum_{n=1}^{\infty} (a_n + ib_n)$ converges, where a_n and b_n are real.

P23/761

(Continued)

5

P23/761

(Turn Over)

(c) Define a power series.

- 2
- (d) State and prove the fundamental theorem of algebra.

6

Or

Expand $f(z) = \log(1+z)$ in a Taylor's series about z = 0.

6. (a) Let R be the radius of convergence of the series

$$\sum_{n=0}^{\infty} a_n z^n$$

Then write the radius of convergence of the series

$$\sum_{n=0}^{\infty} n a_n z^{n-1}$$

1

1

(b) Choose the correct answer from the following:

An absolutely convergent series is

- (i) divergent
- (ü) convergent
- (iii) oscillatory
- (iv) conditionally convergent

(c) State and prove Laurent's theorem.

Or

Expand $f(z) = \frac{1}{(z+1)(z+3)}$ in a Laurent series valid for 1 < |z| < 3.
