6 SEM TDC DSE PHY (CBCS) 2 (H)

2023

(May/June)

PHYSICS

(Discipline Specific Elective)

(For Honours)

Paper: DSE-2

(Nanomaterials and Applications)

Full Marks: 53
Pass Marks: 21

Time: 3 hours

The figures in the margin indicate full marks for the questions

1. Choose the correct option from the following:

1×5=5 ·

- (a) The density of states for a zerodimensional system shows the variation like that of a
 - (i) δ-function
 - (ii) exponential function
 - (iii) step-like behaviour
 - (iv) None of the above

	·		
(b)	Which of the following is an example of a top-down approach?	2. (a)	Write down the basic difference between PVD and CVD techniques.
	(i) Molecular beam epitaxy (ii) Mechanical grinding (iii) Gas phase condensation	(b)	Discuss the steps involved for synthesis of nanostructure materials by Sol-Gel method or spray pyrolysis method.
	(iv) Molecular self-assembly	(c)	Write the various factors that affect the resolving power of an optical
(c)	Mott-Wannier exciton cannot be formed in which of the following materials? (i) CdTe	(d)	Explain the different modes of operation of STM.
	∷்) CdSe (யி) Si		Or
	(iv) NaCl		Explain direct and indirect semi- conductors with schematic diagram.
(d)	Coulomb interaction happens in (i) insulators (ii) metals	3. (a)	Give the schematic diagram and discuss the working principle of a transmission electron microscope.
	(iii) semiconductors (iv) All of the above	(b)	What is meant by optical storage? Describe briefly about various optical storage devices. 1+3=4
(e)	The charging effect which blocks the injection of single charge into or from the quantum dot is (i) tunneling effect (ii) hopping effect	(c)	Define density of states of materials at nanoregime. Derive the expression for density of states (DoS) of a three-dimensional bulk system. 1+3=4
	(iii) Coulomb blockage (iv) None of the above	4. (a)	For an electron in a 1-D box of length 2 nm, calculate the energy separation between the levels for $n=7$ and $n=3$.
P23/825	(Continued)	P23/ 825	(Turn Over

	(b)	How can the lowering of size affect band gap? 2		
5.	(a)	What are excitons? Explain the different types of excitons. 1+2=3		
	(b)	Calculate the exciton Bohr radius for CdSe. Given $m_e^* = 0.13 m_e$, $m_h^* = 0.4 mm_e$, where m_e is free electron		
		mass and dielectric constant $\varepsilon = 9 \cdot 4$.		
6.	(a)	How can thin films be used for making LEDs and solar cells?		
	(b)	Write briefly about the charging effect in quantum dot. 3		
	(c) .	What is hopping conductivity? Mention different types of hopping conduction. 1+2=3		
•		Or		
		What do you mean by surface defects and deep-level defects? 1½+1½=3		
7.	7. Write short notes on any two of the following:			
	(a)	Single-electron transistor		
	(b)	Quantum dots in LED		
	(c)	MEMS		

P23-	-120	0/825 6 SEM·TDC DSE PHY (CBCS) 2 (H)		