4 SEM TDC CHM M 1

2023

(May/June)

CHEMISTRY

(Major)

Course: 401

(Physical Chemistry)

Full Marks: 48
Pass Marks: 14

Time: 2 hours

The figures in the margin indicate full marks for the questions

1. Choose the correct option:

 $1 \times 4 = 4$

- (a) What is the necessary condition for a reaction to be spontaneous at all temperatures?
 - (i) ΔS should be negative and ΔH should be positive
 - (ii) ΔS should be positive and ΔH should be negative
 - (iii) ΔS and ΔH should be positive
 - (iv) ΔS and ΔH should be negative

- (b) Which of the following laws states that, "when a system is at absolute zero temperature, its entropy is equal to zero"?
 - (i) Zeroth law of thermodynamics
 - (ii) First law of thermodynamics
 - (iii) Second law of thermodynamics
 - (iv) Third law of thermodynamics
- Hydrogen electrode which is the reference electrode can be used as which of the following?
 - (i) Anode only
 - (ii) Cathode only
 - (iii) Anode or cathode
 - (iv) Salt bridge
- A type of battery which can be charged, discharged into a load and then recharged many times is called
 - (i) rechargeable battery
 - (ii) secondary battery
 - (iii) primary battery
 - (iv) Both (i) and (ii)

- 2. Answer the following questions:
 - (a) State and explain Nernst heat theorem.
 - Write the relationship between molar conductance and specific conductance. Write their SI units.
 - Write a short note Debveon Falkenhagen effect.
 - Write the differences between electrolytic cell and galvanic cell.
 - What do you mean by anomalous transference number?
 - The specific conductivity of 0.01 N solution of KCl 298-K is at 0.0014114 S cm⁻¹. If the resistance of the solution is 725Ω , then find the cell constant.
- 3. Answer any two of the following questions: $4 \times 2 = 8$
 - Derive an expression for the entropy change for isothermal mixing of ideal gases.
 - Discuss the criteria for spontaneity of a reaction in the light of Gibbs-Helmholtz equation.
 - Discuss how the absolute entropy of a pure substance can be determined using the third law of thermodynamics.

 $2 \times 6 = 12$

- **4.** Answer any *three* of the following questions: $4\times3=12$
 - (a) The molar conductances at infinite dilution of HCl, NaCl and NaZ (sodium crotonate) are 4.25×10^{-2} , 1.25×10^{-2} and 8.0×10^{-3} S m² mol⁻¹ respectively. Calculate the molar conductance of crotonic acid (HZ) at infinite dilution. The specific conductance of a 0.001 M aqueous solution of crotonic acid (HZ) at $25 \,^{\circ}$ C is 3.8×10^{-3} S m⁻¹. Find the degree of dissociation of crotonic acid at $25 \,^{\circ}$ C.
 - (b) What is transport number? State the Hittorf's rule. How is this rule related to transport number of an ion? 1+1+2=4
 - (c) Write short notes on any two of the following: 2×2=4
 - (i) Asymmetric effect
 - (ii) Wien effect
 - (iii) Walden's rules
 - (d) Write the principle of conductometric titration. Mention the advantages of conductometric titrations. 2+2=4

- **5.** Answer any *two* of the following questions: $6 \times 2 = 12$
 - (a) What are concentration cells? Derive an expression for the e.m.f. of a concentration cell without transference.

 2+4=6
 - (b) Describe how the pH of a solution can be determined with the help of glass electrode.
 - (c) (i) Deduce the Nernst equation for cell potential.
 - (ii) Calculate the e.m.f. of the following cell. Given that the standard potentials of Ag/Ag⁺ and Zn/Zn²⁺ half cells are +0.80 V and -0.76 V respectively:

 $Zn |Zn^{2+}(0.001 M)| Ag^{+}(0.1 M) |Ag$

6

3

3