4 SEM TDC MTMH (CBCS) C 9

2023

(May/June)

MATHEMATICS

(Core)

Paper: C-9

(Riemann Integration and Series of Functions)

Full Marks: 80
Pass Marks: 32

Time: 3 hours

The figures in the margin indicate full marks for the questions

1. (a) State the two vital requirements for existence of

 $\int_{a}^{b} f(x) dx$

1+1=2

(b) Show that if $f \in R[a, b]$, then the value of $\int_a^b f(x) dx$ is unique.

3

2

Or

Show that every constant function is integrable.

- 2. (a) Let $P = \{([x_{i-1}, x_i]), t_i\}_{i=1}^n$ be a tagged partition of I = [a, b]. Then define Riemann sum of $f : [a, b] \to \mathbb{R}$. Give an example of the Riemann sum if I = [1, 2].
 - (b) Let $P = \{([x_{i-1}, x_i]), t_i\}_{i=1}^n$ be a tagged partition of I = [a, b]. Then show that S(kf, P) = kS(f, P).
 - (c) Answer any four questions from the following: 5×4=20
 - (i) Write an example with explanation thereof that all bounded functions are not Riemann integrable.

(ii) Let $f:[a,b] \to \mathbb{R}$ is such that if $x_1 < x_2$, then $f(x_1) \le f(x_2)$. Show that $f \in R[a,b]$.

(iii) Let $f:[a,b]\to\mathbb{R}$ be integrable. Then |f| is integrable and show that

$$\left| \int_a^b f(x) \, dx \right| \le \int_a^b |f(x)| \, dx$$

(iv) Let $f, g: [a, b] \to \mathbb{R}$ be integrable and $f(x) \le g(x) \ \forall \ x \in [a, b]$. Then show that

$$\int_a^b f(x) dx \le \int_a^b g(x) dx$$

(v) Let $f:[a,b] \to \mathbb{R}$ be integrable. Define F on [a,b] as $F(x) = \int_a^x f(t) dt$ where $x \in [a,b]$. Show that F is differentiable at $c \in [a,b]$ and F'(c) = f(c).

- 3. (a) Show that
 - (i) $\Gamma(1) = 1$

(ii) $\Gamma(n+1) = n\Gamma(n)$

1+2=3

- (b) Show that if $m \in \mathbb{N}$, then $\Gamma(m+1) = \underline{m}$. 3
- (c) Discuss the convergence of beta function.

Or

Show that $\int_{-\infty}^{\infty} e^{-u^2} du = \sqrt{\pi}$ and hence show that $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$.

- 4. (a) State whether true or false:

 Pointwise convergence implies uniform convergence.
 - (b) Let (f_n) be a real sequence of functions defined on a finite set $X = \{a_1, ..., a_k\}$ converging pointwise to a function $f: X \to \mathbb{R}$. Establish that the convergence is uniform.

(c) Let (f_n) be a sequence of integrable functions on [a,b]. Let $f_n \to f$ uniformly on [a,b]. Show that f is integrable on [a,b] and

 $\int_{a}^{b} f(x)dx = \lim_{a} \int_{a}^{b} f_{n}(x)dx$ 4

- (d) Show that if (f_n) be a uniformly Cauchy sequence on a set X in \mathbb{R} , then it converges to $f: X \to \mathbb{R}$ uniformly.
- (e) Show that the series

$$\sum_{n=1}^{\infty} \frac{x}{(1+nx^2)n}$$

converges uniformly on any interval [a, b].

(f) State and prove Cauchy's criterion for the uniform convergence of a series.

(g) Let $f_n:(a,b)\to\mathbb{R}$ be differentiable and the sequence (f'_n) converges uniformly to $g:(a,b)\to\mathbb{R}$. Let there exists $c\in(a,b)$ such that the sequence $(f_n(c))$ converges. Then show that the sequence (f_n) converges uniformly to a continuous function $f:(a,b)\to\mathbb{R}$.

5. (a) State whether true or false:

A power series is a particular case of infinite series of functions

$$\sum_{n=0}^{\infty} f_n(x)$$

(b) Let $\sum_{n=0}^{\infty} a_n(x-a)^n$ be a power series. Show that there exists a unique extended real number R; $0 \le R < \infty$, such that $\forall x$ with |x-a| < R, the series converges absolutely and uniformly to a function f on (-r,r); 0 < r < R. (c) Given a power series $\sum_{n=0}^{\infty} a_n (x-a)^n$, determine an extended real number R such that $\frac{1}{R} = \lim |a_n|^{\frac{1}{n}}$.

(d) State and prove Abel's limit theorem. 5

* * *