2 SEM TDC CHMH (CBCS) C 3

2023

(May/June)

CHEMISTRY

(Core)

Paper: C-3

(Organic Chemistry)

Full Marks: 53
Pass Marks: 21

Time: 3 hours

The figures in the margin indicate full marks for the questions

- **1.** Choose the correct answer from the following: $1 \times 5 = 5$
 - (a) Which is the most stable carbocation among the following?

iii)
$$H_3C - C + (iv) + H_3C - C + (iv) + H_3C - C + (iv)$$

How many chiral carbons are present in the given molecule?

- (i) 1
- (ii) 2
- (iii) 3
- (iv) None of the above
- The reagent used in Corey-House synthesis is
 - (i) R2CuLi
 - (ii) Li2CuCl4
 - (iii) RCuLi
 - (iv) R2CuLi2
- According to Baeyer's strain theory, cyclopentane is most stable cyclic compound because its bond angles are close to
 - (i) octahedral
 - (ii) tetrahedral
 - (iii) pentahedral
 - (iv) None of the above

- Which one of the following does not give isopropylbenzene as a product upon reaction with benzene?
 - (i) (CH₃)₂ CHC1/AlCl₃
 - (ii) CH2CH2CH2Cl/AlCl3
 - (iii) CH₃CH=CH₂/H₃PO₄
 - (iv) (CH₃)₂C=CH₂/H₃PO₄

UNIT-I

2. Answer the following questions:

 $2 \times 3 = 6$

electrophilic reagent and Define Select the nucleophilic reagent. electrophilic and nucleophilic reagent from the following:

Benzyl carbocation is more stable than propyl carbocation. Explain.

CO2 is a non-polar molecule but SO2 is a polar molecule. Explain.

Draw the energy profile diagram for a two-step endothermic reaction in which second step is the rate determining step.

UNIT-II

- 3. Answer the following questions: $2 \times 6 = 12$
 - Specify the following stereoisomers as R and S (any two): $1 \times 2 = 2$

Specify the following geometrical isomers as E and Z (any two): $1 \times 2 = 2$

Interconvert the following projections as directed (any two): $1 \times 2 = 2$

(i)
$$H_5C_2$$
 NH₂ to Fischer projection

- Explain why racemic tartaric acid can be resolved but not meso-tartaric acid. Give the chemical method of resolution.
- (e) A 1.5 g of organic compound was dissolved in 10 ml of alcohol and placed the sample cell of 5 cm path length. The observed rotation of sodium D-line was 1.21°. Calculate the specific rotation of the compound.
- Describe the necessary conditions for a molecule to exhibit optical isomerism.

P23/913

2

2

UNIT-III

- 4. Answer the following questions:
 - (a) Prepare toluene with the help of Wurtz-Fittig reaction.
 - (b) Give the mechanism of chlorination of methane.
 - (c) State Markovnikov's rule and explain the mechanism of addition of HBr to propene in the presence of peroxide.

1+2=3

(d) Write the product(s) of the following elimination reactions: $1\frac{1}{2} \times 2=3$

(i)
$$H_3C$$
— CH_2 — CH_2 — CH_3 — CH_3O — CH_3O — CH_3OH ?

(ii)
$$H_3C$$
— C — CH_2CH_3 (CH₃)₃CO⁻ ?

- (e) Which dienophile is more reactive in Diels-Alder reaction? 2

 CH₂=CHCHO or CH₂=CHCH₂CHO
- (f) What happens when 1,3-butadiene is treated with HBr?

(g) How will you distinguish between 1-butyne and 2-butyne?

Or

Illustrate the mechanism of hydroboration-oxidation reaction.

UNIT-IV

5. (a) According to Baeyer's angle strain theory, cyclopentane is more stable than cyclohexane but practically cyclohexane is more stable. Explain.

(b) Draw the different conformations of n-butane (Newman projection formula) and show which one is most stable.

- (c) How will you synthesize cyclopentane from diethyl adipate?
- (d) Draw the energy profile diagram for the conformations of cyclohexane.

Or

Chair conformation of cyclohexane is more stable than boat conformation. Explain.

2

2

2

2

2

2

UNIT-V

6. (a) Which of the following compounds are aromatic, anti-aromatic and non-aromatic?

(b) Discuss the mechanism of sulphonation of benzene.

(c) Explain why nitration of chlorobenzene gives *ortho*- and *para*-chloronitrobenzene but the chlorination of nitrobenzene gives *meta*-chlorobenzene.

)

* * *