3 SEM TDC GEMT (CBCS) GE 3 (A/B/C)

2023

(Nov/Dec)

MATHEMATICS

(Generic Elective)

Paper: GE-3

Full Marks: 80

Pass Marks: 32

Time: 3 hours

The figures in the margin indicate full marks for the questions

Paper: GE-3A

(Real Analysis)

1. (a) Fill in the blank:

A set S is said to be ____ if it is finite or denumerable.

- (b) Is the set $E = \{2n : n \in \mathbb{N}\}$ denumerable? Justify.
 - (c) Prove that every subset of a countable set is countable.

er enn *af m*ion ir**04**l sa paro

Prove that union of a finite number of countable sets is countable.

1

- (d) If $a \in \mathbb{R}$ and $a \neq 0$, then prove that $a^2 > 0$.
- (e) Let S be a non-empty subset of \mathbb{R} that is bounded above and let a be any number in \mathbb{R} . If $a+S=\{a+s:s\in S\}$, prove that $\sup(a+S)=a+\sup S$.

Or

- If $S = \left\{ \frac{1}{n} : n \in \mathbb{N} \right\}$, prove that $\inf S = 0$.
- State and prove the nested interval property.
- State True or False :

The range of a real sequence may be finite or infinite without ever being the null set.

- (b) Every convergent sequence is bounded. Is the converse true? Justify.
- (c) Write the limit point of the sequence $\{S_n\}$, where $S_n = (-1)^n \left(1 + \frac{1}{n}\right), n \in \mathbb{N}$

Does the range set have limit points? 2+1=3

(d) State and prove Bolzano-Weierstrass theorem for sequences.

Or

Prove that every bounded sequence with a unique limit point is convergent.

(e) Prove that every Cauchy sequence is bounded. Is the converse true? 3+1=4

(f) Show that the sequence $\{S_n\}$, where

$$S_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$$

cannot converge.

Or

Show that the sequence $\{S_n\}$, where

$$S_n = \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{n+n}$$

is convergent for all $n \in \mathbb{N}$.

- (g) Is the sequence $\{n^2\}$ a Cauchy sequence? Justify.
- 3. (a) State the necessary condition for the convergence of an infinite series.
 - (b) State Cauchy's general principle of convergence for series.
 - (c) Prove that the positive term geometric series

$$1+r+r^2+r^3+\cdots$$

converges for r < 1 and diverges to $+\infty$ for $r \ge 1$.

Or.

Discuss the convergence of the series

$$\sum_{n=1}^{\infty} \frac{1}{n^p}$$

24P/**467**

5

(d) Investigate the behaviour of the series whose nth term is

$$\sin\left(\frac{1}{n}\right)$$
Or

Write the three conditions of Leibnitz test.

- (e) Test the convergence of any two of the following: 5×2=10
 - (i) $\sum_{n=1}^{\infty} \{(n^3+1)^{1/3}-n\}$

(ii)
$$\sum_{n=1}^{\infty} \frac{n^2-1}{n^2+1}$$

(iii)
$$\frac{2^p}{1^q} + \frac{3^p}{2^q} + \frac{4^p}{3^q} + \cdots$$

(iv)
$$\frac{1}{1+2} + \frac{2}{1+2^2} + \frac{3}{1+2^3} + \cdots$$

4. (a) Test for uniform convergence of the sequence $\{f_n\}$, where

$$f_n(x) = \frac{nx}{1 + n^2 x^2}$$
, for all real x 5

Show that the sequence $\{f_n\}$, where

$$f_n(x) = \frac{x}{1 + nx^2}$$

is uniformly convergent on any closed interval I.

(b) Let $\{f_n\}$ be a sequence of functions such that

$$\operatorname{Lt}_{n\to\infty}f_n(x)=f(x),\ x\in[a,b]$$

and let
$$M_n = \sup_{x \in [a, b]} |f_n(x) - f(x)|$$

Prove that $f_n \to f$ uniformly on [a, b] if and only if $M_n \to 0$ as $n \to \infty$.

Or

Let $\{f_n\}$ be a sequence of differentiable functions on [a, b] such that it converges at least at one point $x_0 \in [a, b]$. If the sequence of differentials $\{f'_n\}$ converges uniformly to G on [a, b], then prove that the sequence $\{f_n\}$ converges uniformly on [a, b] to f and f'(x) = G(x).

- (c) Give an example of a power series.
- (d) If a power series $\sum a_n x^n$ converges for $x = x_0$, then prove that it is absolutely convergent for every $x = x_1$ when $|x_1| < |x_0|$.
- (e) Determine the radius of convergence and the exact interval of convergence of any one of the following:

(i)
$$x - \frac{1}{2}x^2 + \frac{1}{3}x^3 - \frac{1}{4}x^4 + \cdots$$

(ii)
$$1 + \frac{3}{5}x + \frac{3.5}{5.10}x^2 + \cdots$$

5

5

		•		-			
		Paper: GE-3B			(f)	Explain how the private key symmetric	•
	(C	Cryptography and Network Security)				•	0
1.	(a)	Weite Terre on Pale	•			Or ·	
4.	(α)	Write True or False:	1		(g)	Describe the RSA algorithm.	
		Cryptography is used only for encoding the message.		•	<i>a.</i> .	711	
		mostage.			(h)	Illustrate how digital signature works by giving an example.	8
	(b)	Choose the correct option:	1			Or	0
	•	In public key encryption, the message	•	•	G)	•	
		is encrypted with the receiver's			(i)	Briefly explain the SHA-1 algorithm.	
		(l) private key		•		·	
		(ii) key pair		. 2.	(a)	Define two IPSEC protocols.	2
•		(iii) symmetric key					
• .		(iv) public key			(b)	Briefly explain VPN.	8
	(a)	Change the comment autieur			•	Or	
	(c)	Choose the correct option:	1		(c)	Explain deniel of service attack.	
•		In, same key is used for encryption and decryption.		·	(4)	Definition of the second	
٠.	•	(i) symmetric	•		. (d)	Define the following (any three): 3×3=	9
•	•	(ii) asymmetric	•	. •		(i) IP spoofing -	
		(iii) public key				(ii) TCP session hijacking	
		(iv) None of the above		٠		(iii) Sequence guessing	
•	ς,	भूके राजाव का बार बार्क्स	,			(iv) Teardrop attack	
	(d)	Write True or False:	1			· ·	
• •	-	A message digest is also called hash.	•			(v) TCP sweeps	
((e)	What is cryptography?	2		(e)	Briefly explain how ICMP works.	5
24P/4	67	(Continue	đ)	24P	/467	(Turn Over	- 1
			•			(Turn Over	,

3. (a) Briefly explain SNMP architecture.	•
---	---

(b) What is firewall? Describe how firewall can be used to protect the network.

2+8=10

Or

- (c) Briefly explain the working of secure electronic transaction (SET).
- (d) Briefly explain the following (any four): 4×4=16

(i) Intrusion Detection System (IDS)

Encapsulating Security Payload (ESP)

- (iii) SSL
- (iv) DSS
- (v) MAC
- (vi) Active attack and passive attack

Paper: GE-3C

(Information Security)

1. Answer any *five* of the following questions:

2×5=10

- (a) What is data integrity?
- (b) Write the differences between worm and virus in terms of information security.
- (c) What is a transpositional cipher?
- (d) What is an intrusion detection system?
- (e) What is a hash function?
- (f) Write the principles of security.
- (g) What is a trip-wise security mechanism?
- **2.** (a) Compare and contrast substitution and transposition techniques.
 - (b) Briefly describe any three of the following: 4×3=12
 - (i) Trojan horse
 - (ii) Data availability
 - (iii) MAC
 - (iv) Buffer overflow

24P/**467**

(Turn Over)

3.	(a)	Differentiate between symmetric and asymmetric encryptions.	5
	(b)	Explain Diffie-Hellman key exchange with both keys. Give example. 5+5=	∍10
4.	(a)	Briefly explain the functionalities of data encryption standard (DES).	5
	(b)	Consider the following: Plaintext: 'KEY' SECRET KEY: "CRYPTOGRAPHY"	
	. 1. 2. 1. 2.	Compute the cipher text from the given plain text and key using hill cipher thod. Or	5
		What are the properties that digital signature should have?	
5.	(a)	Write the advantages and disadvantages of secret key encryption.	.5
	(b)	In an RSA system, the public key of a given user is $e=31$, $n=3599$. What is the private key of this user?	5
6.	(a)	Generate public key and private key in case of RSA algorithm if two prime numbers given are 5 and 7. $(p=5 \text{ and } q=7)$	5
•	(h)		•
	<i>(b)</i>	Briefly explain the system threats.	5
4P/	467	(Continue	a)

7 .	Exp	5×2=10	
•	(a)	Auditing and logging	
•	(b)	Public key signature	•.
	(c)	Program threats	•
	(d)	Data integrity	